Examples Sheet 1

1. (Warm-up) Writing the amplitude for a quantum mechanical particle, mass m, to freely propagate in 1-dimension as

$$
\langle x| e^{-i H\left(t-t_{0}\right)}\left|x_{0}\right\rangle \equiv K\left(x, t ; x_{0}, t_{0}\right)=\sqrt{\frac{m}{2 \pi i\left(t-t_{0}\right)}} \exp \left(\frac{i m\left(x-x_{0}\right)^{2}}{2\left(t-t_{0}\right)}\right)
$$

with $t>t_{0}$, show that

$$
\int d x^{\prime} K\left(x, t ; x^{\prime}, t^{\prime}\right) K\left(x^{\prime}, t^{\prime} ; x_{0}, t_{0}\right)=K\left(x, t ; x_{0}, t_{0}\right)
$$

with $t>t^{\prime}>t_{0}$. Verify that $\lim _{t \rightarrow 0} K(x, t ; 0,0)=\delta(x)$ and that

$$
i \frac{\partial}{\partial t} K(x, t ; 0,0)=-\frac{1}{2 m} \frac{\partial^{2}}{\partial x^{2}} K(x, t ; 0,0)
$$

Use these facts to express the solution of the Schrödinger equation for a free particle, $\Psi(x, t)$ in terms of an initial wavefunction $\Psi(x, 0)$ and $K(x, t ; 0,0)$. Check this result for $\Psi(x, 0)=e^{i k x}$, with k constant.
2. Consider the quantum mechanics of a particle moving in 1-dimension with Hilbert space \mathcal{H}. Obtain path integral expressions, in imaginary time T, for the following,
(a) $\operatorname{Tr}_{\mathcal{H}}\left(\mathrm{P} e^{-T H}\right)$, where P is the parity operator $\mathrm{P}: x \mapsto-x$, and the trace of an operator $O, \operatorname{Tr}_{\mathcal{H}}(O)$, is the sum or integral over the expectation values of O in a complete basis of states.
(b) $\left\langle\psi_{f}\right| e^{-T H}\left|\psi_{i}\right\rangle$, where $\psi_{i, f}(x)=\left\langle x \mid \psi_{i, f}\right\rangle$ are arbitrary states in the Hilbert space.

For a particle in a 1-dimensional harmonic potential $V(x)=\frac{1}{2} m \omega^{2} x^{2}$, the amplitude for particle propagation in real time t is

$$
K\left(x, t ; x_{0}, 0\right)=\sqrt{\frac{m \omega}{2 \pi i \sin \omega t}} \exp \left(i m \omega \frac{\left(x^{2}+x_{0}^{2}\right) \cos \omega t-2 x x_{0}}{2 \sin \omega t}\right)
$$

(e.g. see Osborn's notes §1.2.1). Using this amplitude for $t=-i T$, evaluate your expressions for (a) and (b) explicitly in the case that $\left|\psi_{i, f}\right\rangle$ are the ground state of the harmonic oscillator. Check that they agree with what you expect from quantum mechanics, working directly in the energy basis.
3. Consider the partition function

$$
Z(\lambda)=\frac{1}{\sqrt{2 \pi}} \int_{\mathbb{R}} d x \exp \left(-\frac{1}{2} x^{2}-\frac{\lambda}{4!} x^{4}\right)
$$

for a zero-dimensional QFT, given $\lambda>0$.
(a) By expanding the integral in λ, obtain the n-th order perturbative expression

$$
\begin{equation*}
Z_{n}(\lambda)=\sum_{\ell=0}^{n}\left(-\frac{\lambda}{4!}\right)^{\ell} \frac{(4 \ell)!}{4^{\ell}(2 \ell)!\ell!} \tag{1}
\end{equation*}
$$

and show that, for $\ell \leq 3$, the coefficients a_{ℓ} of λ^{ℓ} in this expression are the sums of symmetry factors of the relevant loop Feynman graphs. [At 2-loop order there is only 1 graph, at 3-loops there are 2, and at 4-loops there are 4.]
(b) (Optional but instructive.) Using any computer package, plot $Z_{n}(\lambda=0.1)$ against n to see that there is a region in n where Z_{n} appears to converge before blowing up as n is increased.
(c) (* Slightly beyond the scope of the course.) Show that the minimum value of $a_{\ell} \lambda^{\ell}$ occurs when $\ell \approx \frac{3}{2 \lambda}$. Hence show that the Borel transform

$$
\mathcal{B} Z(\lambda)=\sum_{\ell=0}^{\infty} \frac{1}{\ell!} a_{\ell} \lambda^{\ell}
$$

converges provided $|\lambda|<\frac{3}{2}$ and that in this case

$$
Z(\lambda)=\int_{0}^{\infty} d z e^{-z} \mathcal{B} Z(z \lambda)
$$

so that $Z(\lambda)$ may be recovered from its Borel transform.
(d) By expanding $e^{-x^{2} / 2}$ in the integral in (1) obtain the strong coupling expansion

$$
Z(\lambda)=\frac{1}{2 \sqrt{\pi}} \sum_{L=0}^{\infty} \frac{(-1)^{L}}{L!} \Gamma\left(\frac{L}{2}+\frac{1}{4}\right)\left(\frac{6}{\lambda}\right)^{\frac{L}{2}+\frac{1}{4}}
$$

for $Z(\lambda)$ as a series in $1 / \sqrt{\lambda}$. For $\lambda=\frac{1}{10}$ how many terms does one need in order to obtain the value at which the weak coupling expansion appeared to converge?
4. Let $e^{-W(J) / \hbar}=\int d^{n} \phi e^{-\left(S(\phi)+J_{c} \phi_{c}\right) / \hbar}$, and let $\Gamma(\Phi)$ be the Legendre transform of $W(J)$. Show directly that

$$
\left.\hbar^{2} \frac{\partial^{3} W}{\partial J_{a} \partial J_{b} \partial J_{c}}\right|_{J=0}=\left\langle\phi_{a} \phi_{b} \phi_{c}\right\rangle^{\mathrm{conn}}
$$

and that

$$
-\left.\frac{1}{\hbar} \frac{\partial^{3} \Gamma}{\partial \Phi_{a} \partial \Phi_{b} \partial \Phi_{c}}\right|_{J=0}=\left\langle\phi_{a} \phi_{b} \phi_{c}\right\rangle_{1 \mathrm{PI}}^{\mathrm{conn}} .
$$

5. In lectures we showed that

$$
\int d^{2 k} \theta e^{\frac{1}{2} A_{a b} \theta_{a} \theta_{b}}=\operatorname{Pf}(A)
$$

where A is a real, invertible antisymmetric matrix and θ_{a} are $2 k$ Grassmann variables. By writing $\theta_{a}=N_{a b} \theta_{b}^{\prime}$ for some real matrix N, show that $\operatorname{Pf}\left(N^{T} A N\right)=$ $\operatorname{det}(N) \operatorname{Pf}(A)$. Show that N may be chosen so as to put A into the form

$$
N^{T} A N=\left(\begin{array}{ccccccc}
0 & 1 & & & & & \\
-1 & 0 & & & & & \\
& & 0 & 1 & & & \\
& & -1 & 0 & & & \\
& & & & \ddots & & \\
& & & & & 0 & 1 \\
& & & & & -1 & 0
\end{array}\right) \text {, }
$$

and demonstrate that consequently $\operatorname{Pf}(A)= \pm \sqrt{\operatorname{det} A}$.
6. Consider a theory of 4 Grassmann variables $\theta_{a}, a=1 \ldots 4$, governed by the action

$$
S(\theta)=\frac{1}{2} A_{a b} \theta_{a} \theta_{b}+\frac{1}{4!} \lambda_{a b c d} \theta_{a} \theta_{b} \theta_{c} \theta_{d} .
$$

Compute the partition function of this theory (a) by directly expanding $e^{-S / \hbar}$ in the path integral and (b) by writing down the Feynman rules and drawing all possible vacuum diagrams.
7. Let M be an $N \times N$ Hermitian matrix and let

$$
V(M)=\frac{1}{2} \operatorname{Tr} M^{2}+\frac{g}{4} \operatorname{Tr} M^{4}
$$

where g is a constant.
(a) Show that $V(M)$ is invariant under $M \mapsto U^{\dagger} M U$, where U is a unitary matrix. Explain why this implies that $V(M)$ only depends on the eigenvalues $\left\{\lambda_{i}\right\}$ of M.
(b) Viewing $V(M)$ as the action for a zero-dimensional QFT, obtain an expression for the propagator $\left\langle M_{i j} M_{k \ell}\right\rangle$ correct to lowest nontrivial order in g. [Consider only connected diagrams.]
(c) Now let B, C, and H be further $N \times N$ matrices, each of which have zeros all along the leading diagonal. Let the elements of B and C be fermionic variables, while the entries of H are bosonic. Consider the matrix integral

$$
Z(g)=\int \frac{[d M d B d C d H]}{(2 \pi i)^{N(N-1)}} \exp [-N V(M)+i \operatorname{Tr}(H M)+\operatorname{Tr}(B[M, C])]
$$

where the measure [$d M d B d C d H$] indicates an integral over each entry of M and the off-diagonal entries of B, C, and H. Obtain the effective action for the eigenvalues $\left\{\lambda_{i}\right\}$ of M. [Do not attempt to perform the path integral over these eigenvalues.]

Please e-mail me at M.Wingate@damtp.cam.ac.uk with any comments, especially any errors.

