Examples Sheet 2

1. Consider the theory given by the action

$$S[\phi] = \int d^{d}x \left[\frac{1}{2} \partial_{\mu} \phi \, \partial^{\mu} \phi + \frac{1}{2} m^{2} \phi^{2} + \frac{g}{3!} \phi^{3} + \frac{\lambda}{4!} \phi^{4} \right]$$

where ϕ is a real scalar field.

(a) Determine all one-loop 1PI graphs, complete with their appropriate symmetry factors, which contribute to

$$\langle \phi(x)\phi(y)\rangle$$
, $\langle \phi(x)\phi(y)\phi(z)\rangle$, and $\langle \phi(x)\phi(y)\phi(z)\phi(w)\rangle$,

expressing your answers in terms of integrals over d-dimensional loop momenta. [You are not required to evaluate the integrals.]

- 2. Consider a scalar field ϕ with potential $V(\phi) = \frac{1}{2}m^2\phi^2 + \frac{1}{6}\mu^{\epsilon/2}g(\mu)\phi^3$ in dimension $d = 6 \epsilon$. Here μ is an arbitrary mass scale introduced so that the coupling $g(\mu)$ is dimensionless.
 - (a) Draw the one-loop 1PI graph which contributes to the propagator at order g^2 .
 - (b) Using dimensional regularization, show that the divergent part of the corresponding integral for the 6-dimensional theory is

$$-\frac{1}{\epsilon} \frac{g^2}{(4\pi)^3} \left(m^2 + \frac{p^2}{6} \right)$$

where p is the external momentum. Also compute the divergence corresponding to the 1PI one-loop graph that gives a g^3 correction to the 3-point function, and find the one-loop divergence for the 1-point function.

[Hint: use the Feynman parametrization $\frac{1}{AB} = \int_0^1 dx \int_0^1 dy \frac{\delta(x+y-1)}{(xA+yB)^2}$, then change of variables to get denominators of integrands into the form $(\ell^2 + \Delta)^2$, where ℓ is the loop momentum. You can generalize, introducing more Feynman parameters for integrals which need it.]

(c) Show that in 6 dimensions all these divergences may be cancelled by introducing the counterterm action

$$S_{\rm ct}[\phi] = \int d^d x \, \mathcal{L}_{\rm ct} = -\frac{1}{\epsilon} \frac{1}{6(4\pi)^3} \int d^d x \left[\frac{g^2}{2} \partial_\mu \phi \, \partial^\mu \phi + \mu^{-\epsilon} (V''(\phi))^3 \right] \,.$$

Check that \mathcal{L}_{ct} has dimension d.

(d) Determine the β -function for the coupling g and show $\beta(g) < 0$ at small g.

3. Show that under the redefinition $g_i \mapsto g'_i(g_j)$ of the couplings of a theory at scale Λ , the β -functions transform as

$$\beta_i \mapsto \beta_i' = \frac{\partial g_i'}{\partial g_j} \beta_j$$
.

Show that in a theory with a single coupling g, the first two terms in the β -function $\beta(g) = ag^3 + cg^5 + \mathcal{O}(g^7)$ are invariant under any coupling constant redefinition of the form $g \mapsto g' = g + \mathcal{O}(g^3)$.

Show that, in a neighbourhood of g = 0, it is possible to choose this redefinition so as to remove all terms except these first two. [Hint: consider setting $g'(g) = g + g^3 f(g)$ where f(0) = 1.] What is the significance of this calculation?

- 4. Consider a four-dimensional theory whose only couplings are a mass parameter m^2 and a marginally relevant coupling g.
 - (a) Write down generic expressions for the β -functions in such a theory to lowest non-trivial order. (You should be able to identify the *values* of the classical contributions to the β -functions and the *sign* of the leading-order quantum correction to $\beta(g)$.
 - (b) Sketch the RG flows for this theory.
 - (c) Suppose that $g(\Lambda') = 0.1$ when the cut-off Λ' is fixed at 10^5 GeV. If $m^2(\Lambda')$ is measured to be 100 GeV, what value of $m^2(\Lambda)$ would be needed at the higher scale $\Lambda = 10^{19}$ GeV?
 - (d) Suppose you changed your value of $m^2(\Lambda)$ by one part in 10^{20} . What would be the change in $m^2(\Lambda')$?

Please e-mail me at M.Wingate@damtp.cam.ac.uk with any comments, especially any errors.