Examples Sheet 4

1. Show that the QED correlation function $\left\langle j^{\mu}(x) j^{\nu}(y)\right\rangle$, when written in momentum space, is proportional to

$$
\Pi^{\mu \nu}(k)+\Pi^{\mu \rho}(k) D_{\rho \sigma}(k) \Pi^{\sigma \nu}(k)+\cdots
$$

where $j^{\mu}=\bar{\psi} \gamma^{\mu} \psi, \Pi^{\mu \nu}$ is the photon self-energy (the sum of 1PI diagrams with 2 amputated, external photons), and $D_{\rho \sigma}$ is the tree-level photon propagator. Hence show that $\Pi^{\mu \nu}$ is transverse, i.e. that $k_{\mu} \Pi^{\mu \nu}=0$.
2. Complete the one-loop renormalization of nonabelian gauge theory with n_{f} flavours of fermions using dimensional regularization in $d=4-\epsilon$ dimensions. That is, show that the following counterterms must be added (assuming Feynman gauge, $\xi=1$)
(a) Gauge boson propagator counterterm

$$
\delta_{3}=\frac{g^{2}}{(4 \pi)^{2}} \frac{2}{\epsilon}\left(\frac{5}{3} C_{A}-\frac{4}{3} n_{f} T_{F}\right) ;
$$

(b) Fermion propagator counterterm

$$
\delta_{2}=-\frac{g^{2}}{(4 \pi)^{2}} \frac{2}{\epsilon} C_{F} ;
$$

(c) Vertex counterterm

$$
\delta_{1}=-\frac{g^{2}}{(4 \pi)^{2}} \frac{2}{\epsilon}\left(C_{A}+C_{F}\right) .
$$

Note $\operatorname{Tr} T^{a} T^{b}=T_{F} \delta^{a b}, T_{i j}^{a} T_{j k}^{a}=C_{F} \delta_{i k}$, and $f^{a c d} f^{b c d}=C_{A} \delta^{a b}$.
[The full calculation is tedious, but you should do enough to be sure you are able to correctly evaluate contributions due to individual diagrams.]
3. Consider Yang-Mills theory with a complex scalar field $\phi(x)$ which transforms under representation r of the gauge group. Show that the Feynman rules involving ϕ are a straightforward modification of those from scalar QED (Sheet 3). Compute the β-function for the coupling g. [You should reuse results from Sheet 3 and from earlier this sheet.]
4. Consider a gauge-fixed action for a free Abelian gauge field A^{μ} of the form

$$
S=\int d^{d} x\left[\frac{1}{4} F_{\mu \nu} F^{\mu \nu}+B \partial_{\mu} A^{\mu}-\frac{\xi}{2} B^{2}-\bar{c} \partial^{2} c\right]
$$

where B is an auxiliary boson field and (c, \bar{c}) are anticommuting ghost and antighost fields.
(a) Verify that this action is invariant under the BRST transformation: $\delta A^{\mu}=$ $\theta \partial^{\mu} c, \delta \bar{c}=\theta B$, and $\delta c=\delta B=0$. Also verify that the transformation is nilpotent.
(b) Show that the action can be written in the form

$$
S=\int d^{d} x\left[\frac{1}{2} \Phi^{T} \Delta \Phi-\bar{c} \partial^{2} c\right]
$$

where

$$
\Phi=\binom{A^{\nu}}{B}, \quad \Delta=\left(\begin{array}{cc}
-\partial^{2} \delta_{\mu \nu}+\partial_{\mu} \partial_{\nu} & -\partial_{\nu} \\
\partial_{\mu} & -\xi
\end{array}\right)
$$

and Φ^{T} is the transpose of Φ.
(c) Obtain equations or the normalized correlation functions $\left\langle\Phi(x) \Phi^{T}(0)\right\rangle$ and $\langle c(x) \bar{c}(0)\rangle$ and show that

$$
\begin{aligned}
\int d^{d} x e^{-i p \cdot x}\left\langle\Phi(x) \Phi^{T}(0)\right\rangle & =\frac{1}{p^{2}}\left(\begin{array}{cc}
\delta_{\mu \nu}-(1-\xi) \frac{p_{\mu} p_{\nu}}{p^{2}} & -i p_{\mu} \\
i p_{\nu} & 0
\end{array}\right) \\
\int d^{d} x e^{-i p \cdot x}\langle c(x) \bar{c}(0)\rangle & =\frac{1}{p^{2}} .
\end{aligned}
$$

(d) Assuming that $\langle\delta Y\rangle=0$ for any Y, consider $\langle\delta(\Phi(x) \bar{c}(0))\rangle$ and show that we must have $\langle B(x) B(0)\rangle=0$. Obtain a relation between $\langle c(x) \bar{c}(0)\rangle$ and $\left\langle A^{\mu}(x) B(0)\right\rangle$ which should be verified.

Please e-mail me at M.Wingate@damtp.cam.ac.uk with any comments, especially any errors.

