On these sheets, no attempt is made to "model" real-life situations: no trains, cars, cyclists, lifts, etc. It is assumed that there are no "real" forces, such as air-resistance unless they are specifically mentioned. Most questions, but not all, avoid numbers and units, prefering general algebraic formulae with consistent dimensions.

Exercises for Lecture 4

1. Three particles of masses m_{1}, m_{2} and m_{3} are fixed to a light rod at distances d_{1}, d_{2} and d_{3} from one end. Find the distance of the centre of mass of the system from this end.
2. The density of a $\operatorname{rod} A B$ at a point x from A is $\rho_{0} x / a$, where ρ_{0} is a constant and a is the length of the rod. Find the mass of the rod and show that the centre of mass is a distance $\frac{2}{3} a$ from A. [You may treat the rod as 1 -dimensional.]
3. A circular arc of radius a has constant density ρ and subtends an angle 2α at its centre. Show that its centre of mass is a distance $a \sin \alpha / \alpha$ from the centre. [You may treat the circular arc as 1-dimensional.]

Comments or queries to M.Wingate@damtp.cam.ac.uk
Course website: http://www.damtp.cam.ac.uk/user/wingate/Mechanics

