Mechanics (non-examinable) Dr M B Wingate

On these sheets, no attempt is made to "model" real-life situations: no trains, cars, cyclists, lifts, etc. It is assumed that there are no "real" forces, such as air-resistance unless they are specifically mentioned. Most questions, but not all, avoid numbers and units, prefering general algebraic formulae with consistent dimensions.

Exercises for Lecture 5

- 1. A particle moving in a straight line has initial speed u and accelerates with constant acceleration a, where a < 0, until it comes to rest. How long does this take and how far has the particle travelled?
- 2. A particle moving in a straight line accelerates from rest at constant acceleration b and then decelerates to rest again with constant deceleration b/2, moving a total distance d in time t. Draw a graph of velocity against time. Show that $d = \frac{1}{6}bt^2$.
- 3. The acceleration of a particle moving in a straight line, at time t after starting from rest is $5 + 4t t^2$ for $0 \le t \le 5$ and zero for other values of t. Find:
 - (i) the maximum acceleration;
 - (ii) the greatest speed;
 - (iii) the distance travelled until the particle attains its greatest speed.
- 4. A particle is projected vertically upwards from the ground at an initial speed of 25 m/s. Taking $g = 10 \text{ m/s}^2$ (actually, g is more like 9.8 m/s^2), find the amount of time that the particle spends at a height greater than or equal to 30 m.
- 5. A particle, originally at the origin and moving at velocity \mathbf{u} , accelerates with constant acceleration \mathbf{a} until, at displacement \mathbf{x} from the origin, it attains velocity \mathbf{v} . Show that

$$v^2 - u^2 = 2\mathbf{a} \cdot \mathbf{x}$$

where u and v are the initial and final speeds of the particle.

6. A particle is projected at speed V from ground level at an angle of α above the horizontal. Show that its maximum height is $\frac{1}{2}V^2 \sin^2 \alpha/g$ and that the particle lands a distance $V^2 \sin 2\alpha/g$ from the point of projection. Deduce that the maximum range is obtained by firing the particle at $\alpha = \pi/4$.

Comments or queries to M.Wingate@damtp.cam.ac.uk Course website: http://www.damtp.cam.ac.uk/user/wingate/Mechanics