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Introduction

The study of Statistical Physics teaches us how to connect micro-
scopic physics, i.e. a description of few-particle dynamics and en-
ergies, and macroscopic physics, steady-state or near-equilibrium
properties of gases, liquids, or magnetic substances, for example.
Statistical field theory further develops these ideas, approximating
models of microscopic degrees-of-freedom by continuous fields.
The ideas of statistical field theory have a natural overlap with clas-
sical and quantum field theories you would see in other contexts.

We will focus much of our effort on describing critical phenemona,
the physics of second-order phase transitions. When a system un-
dergoes a second-order phase transition, the free energy varies
continuously, but its second (or higher) derivatives diverges at the
critical point. A remarkable universality of these divergences was
discovered: many disperate systems exhibit the same behaviour
near the critical point. The modern theory of renormalization was
developed to explain this universality. There we will see how dif-
ferent microscopic theories can be related to each other, and what
features can be predicted to be universal.

These developments in the theory of critical phenomena cleared
up many of the mysteries of renormalization as it was first devel-
oped in quantum field theories. It goes beyond the application of a
perturbative expansion and avoids having to “subtract infinities.”
There will be several opportunities for us to draw parallels between
material in this course and the QFT and AQFT courses.

This course assumes that you have completed an undergraduate
course in Statistical Physics. In practice, however, we rely only on
a few general ideas and straightforward calculations from such a
course. In the rest of this chapter, we very briefly summarize the
main ideas which should either be familiar or which should be
studied independently alongside these lectures. In the latter case
you might consult standard texts on Statistical Physics available
in University and College librarires, as well as the notes covering
the Part II Course Statistical Physics (and more) by Tong.1 Some 1 D Tong. Statistical physics: Part II

lecture notes. Tong’s DAMTP website,
2012

examples questions of relevance to this course will be provided in
Examples Sheet 0.
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1.1 Statistical Mechanics

Statistical mechanics allows us to predict macroscopic properties of
systems in or near equilibrium by replacing time averages over mi-
croscopic dynamics with ensemble averages over possible microstates
states.

Landau2: distribution function ρ. ρ12 = ρ1ρ2, or taking the 2 L D Landau and E M Lifshitz. Statis-
tical Physics, Part 1, 3rd Ed. Pergemon
Press, 1980. ISBN 0-08-023038-5

logarithm of both side, log ρ’s are additive. Therefore log ρ must
depend linearly on constants of the motion. If we imagine a gas in
a finite box, the only constant of the motion is energy.

log ρ ∝ E . (1.1)

For an isolated system E is conserved, say equal to E = E0 and the
distribution function is the microcanonical ρ(E) = δ(E− E0). For a
system in thermal equilibrium with a heatbath

ρ(E) =
1
Z

e−βE (1.2)

where Z is a normalization factor known as the partition function
and β is a constant whose physical meaning we will see is given by
the reciprocal of temperature.

Once we have the probability distribution function and the
Hamiltonian we evalulate the expectation value of some macro-
scopic observable, say O, using

〈O〉 = 1
Z

∫
O ρ(E) dE . (1.3)

In order to avoid ambiguity, we will write 〈E〉 ≡ U.
Depending on the specific calculation, one might change integra-

tion variables from E to the natural microscopic degrees of freedom
used in the Hamiltonian. For classical gases, the Hamiltonian de-
pends on the positions ~xi and momenta ~xi of the constituent parti-
cles E = H({~x}, {~p}). (The curly brackets indicate the Hamiltonian
is a function of the whole collection of positions and momenta.)
We will also be interested in systems of magnetic spins σi, fixed in
position so that E = H({σ}). Finally, one might consider the energy
levels to be discrete, e.g. particles in a box, properly taking into
account modifications necessary to describe bosons or fermions at
low temperatures.

Entropy S is the logarithm of the statistical weight of a system
with energy E. within an ensemble.

S = −〈log ρ〉 . (1.4)

In the canonical ensemble S = β〈E〉+ log Z.

∂S
∂U

= β =
1
T

. (1.5)

This provides us with a definition of temperature T. (We assume
energy units for T, i.e. we set Boltzmann’s constant kB = 1.)
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The free energy is define as

F = −T log Z , (1.6)

an expression often written Z = e−βF. This is sometimes referred to
as the Helmholtz free energy when we need to distinguish it from
other free energies, e.g. the Gibbs free energy.

1.2 Thermodynamics

Historically the study of thermodynamics predates statistical
physics; it took some time before the idea of fluids as collections
of atoms or molecules gained support. Here we do not take a his-
torical approach. Nevertheless, we will emphasize throughout the
course how macroscopic phenomena depend on microscopic details
in some ways, but are independent of them in others. Thus here we
review some ideas from thermodynamics, but occasionally making
reference to the underlying statistical mechanics.

From (1.6) we see the free energy F is explicitly a function of
temperature T. For a gas of particles, it would also depend on
volume through the probability density in the partition function.
For example, a quantum gas in a finite box has quantized energy
levels, with energies dependent on the box lengths. Furthermore
if the particles interact, the strength of interactions often depends
on the distances between particles, which would have a varying
mean as the volume changes. In magnetic systems, the degrees-of-
freedom interact with magnetic field. Let us denote the strength of
an external magnetic field by h, and assume it is given in energy
units. Therefore, we generally would write that F is a function of 3

independent variables

F = F(T, V, h) . (1.7)

Further situations could be considered as well, such as varying
particle number N, but let us not do so here.

The responses to variations of each of these independent vari-
ables are also of interest, as they are proportional to the entropy S,
the pressure p, and the magnetization M:

∂F
∂T

∣∣∣∣
V,h

= −S ,
∂F
∂V

∣∣∣∣
T,h

= −p ,
∂F
∂h

∣∣∣∣
T,V

= −M . (1.8)

These 3 dependent variables are conjugate partners to the 3 inde-
pendent variables.

One can change variables by means of Legendre transforms.
This results in new thermodynamic potentials. For example the
internal energy (or average energy, from the statistical point of
view) U = U(S, V, h) = F(T, V, h) + TS, so that dU = T dS− p dV −
M dh. Similarly, the Gibbs free energy is defined G = G(T, p, h) =

F(T, V, h) + Vp. The magnetic Gibbs free energy, Γ = Γ(T, V, M) =

F(T, V, h) + hM will be useful later in this course. Note some texts
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prefer an internal energy Ũ = Ũ(S, V, M) = U(S, V, h) + hM,
although they might not use the tilde.

An equation of state is a relationship between thermodynamic
variables. Most commonly in Statistical Physics courses, the equa-
tion of state gives the pressure of a gas in terms of its temperature
and volume: p = p(V, T). The equation-of-state for an a gas of
N noninteracting, classical particles, i.e. and ideal gas, is pv = T,
where v = V/N is the mean volume-per-particle. In this course we
will use magnetic systems for most of our examples; in those cases
the equation of state will often take the form M = M(T, h).

We shall largely be interested in systems in thermal equilibrium.
In a thermally isolated system the dynamics of the system obey
the second law of thermodynamics. That is, the entropy tends to
increase over time: ∆S ≥ 0. Consequently, equilibrium is reached
when entropy reaches a maximum. This principle leads to conse-
quences for more general situations. When a fixed-volume system
is in contact with a heat reservior of constant temperature, the
Helmholtz free energy F which reaches a minimum as the system
reaches stable thermal equilibrium. If instead the system’s pres-
sure is kept constant, then it is the Gibbs free energy G which is
minimized in equilibrium.3 3 F Reif. Fundamentals of Statistical and

Thermal Physics. McGraw-Hill, 1965

1.3 Phase transitions

A phase transition is a discontinuous or otherwise singular change
in the thermodynamic properties of a system as thermodynamic
variables are changed. The free energy, or one of its derivatives, is
a singular function at that point, or set of points. We will be dis-
cussing phase transitions throughout this course. Here we simply
make contact with what might have appeared in your undergradu-
ate Statistical Physics course.

A phase transition is said to be first order if the first derivative of
the free energy has a discontinuity. This occurs when an instability
arises. It can be shown that a condition for stability of the system,
under volume perturbations, is that the Gibbs free energy satisfy

∂2G
∂V2

∣∣∣∣
T
> 0 . (1.9)

This implies
∂p
∂V

∣∣∣∣
T
< 0 (1.10)

is required for stability. This makes sense intuitively. Think about
a gas in thermal contact with a heat reservoir. If we decrease the
size of the container, we would expect the pressure to increase: the
gas would push back. This is the stable situation. If the opposite is
true the gas would collapse. In fact this is not what occurs, instead
a phase transition to a liquid takes place.

Let us look at the van der Waal’s equation, a modification of the
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Figure 1.1: Van der Waals isotherms
for temperatures above, at, and below
the critical temperature. (Arbitrary
units, with (a, b) = (1.5, 0.01).)

ideal gas equation of state which reads

p =
T

v− b
− a

v2 . (1.11)

The parameters a and b are model parameters tuned for a particular
gas in order to account for interactions and finite particle size,
respectively. The model is only realistic for b � v (equivalent
to saying that the mean interparticle separation should be much
larger than the linear size of the particles), so it is clear that for
large enough T (1.10) holds for all v. As T is lowered, however,
the derivative in (1.10) may become nonnegative. In fact, when T
reaches the critical value, Tc = 8a

27b , from above, an instability may

develop: ∂p
∂v

∣∣∣
T
= 0 when (vc, pc) =

(
3b, a

27b2

)
. Figure 1.1 shows 3

isotherms, one of them with T < Tc clearly showing an example an
instability signaled by ∂p

∂v > 0.
In fact, when such an instability occurs in the equation-of-state,

the system goes through a first-order transition, staying at con-
stant pressure as the volume is increased or decreased. During this
transition, there is a mixture of liquid and gas. This can be seen
in Figure 1.2, where the data points on the left correspond to the
highest densities ρg, for a given temperature, at which the system is
purely gaseous. On the right, the points indicate the lowest densi-
ties at which the system is purely liquid ρ`. The units in the figure
are relative to the critical point (ρc, Tc).

The data show a remarkable universality: the liquid-gas coex-
istence curves lie on top of each other for a number of gases. It is
interesting to consider the difference in densities δρ = ρ` − ρg,
or equivalently the difference in mean volume-per-particle δv =

vg − v` (since v = 1/ρ). This is an order parameter describing the
approach to the critical point. Near T = Tc, the curve in Figure 1.2
can be fit to

δv ∼ (Tc − T)β (1.12)

where β is a dimensionless critical exponent.4 From a fit to the data, 4 Do not confuse this with the inverse
temperature.
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these formulae should be used for computing 
values of pg. There are however occasions when 
one requires relatively accurate values not of pg 
itself but of (Pl- pg) / pc; on such occasions formula 
(6.4) . in view of its extreme simplicity and 
surprisingly high accuracy has much to recom-
mend it. An example of its use will occur in 
Section 16. 

7. VAPOR PRESSURE 

At temperatures considerably below the critical 
temperature, say T<0.65Tc, when formula (6.2) 
for Pu becomes inaccurate it is convenient to con-
sider the equilibrium vapor pressure Prather 
than pg. According to the principle of corre-
sponding states one should expect P fPc to be a 
universal function of T /Tc• In particular the 
temperatures T8 at which the equilibrium pres-

sure P is one-fiftieth of the critical pressure 
should be corresponding temperatures for differ-
ent substances and the ratio of T. to Tc should 
have a universal value. On the other hand Tb the 
boiling points at a pressure of one atmosphere are 
not corresponding temperatures for different 
substances. In rows 9 and 10 of Table I are given 
Tb the boiling point at a pressure of one atmos-
phere, and T. the boiling point at a pressure one-
fiftieth the critical pressure. In rows 11 and 12 
are given the ratios To/Te and T./Tc. It will be 
seen that the values of the latter are, as expected, 
more nearly the same than the values of the 
former. 

8. ENTROPY OF EVAPORATION 

According to Trouton's rule the molar entropies 
of evaporation for different substances have 

 Reuse of AIP Publishing content is subject to the terms: https://publishing.aip.org/authors/rights-and-permissions. Downloaded to  IP:  131.111.185.9 On: Mon, 10
Oct 2016 08:53:47

Figure 1.2: Liquid-vapour coexistence
curve for 8 systems, with density
ρ = 1/v on the horizontal axis and
temperature on the vertical axis.
Figure reproduced from E A Guggen-
heim, J. Chem. Phys. 13, 253, 1945.

β ≈ 1
3 .

There is a similar situation in magnetic systems, where the order
parameter is the magnetization, where

M ∼ (Tc − T)β . (1.13)

We will discuss critical exponents in the context of magnetic sys-
tems in more detail in the next chapter.



Landau theory of phase transitions

Landau developed an elegant model for understanding phase tran-
sitions. We will present this using the language of magnetic sys-
tems, where the order parameter is the magnetization-per-spin
m. In terms of the free energy-per-spin, or free energy density,
F ≡ F/N, the magnetization is

m = − ∂F
∂h

∣∣∣∣
T

. (2.1)

With the number of spins and the temperature held constant, a
stable equililibrium state is one in which F is a global minimum.5 5 Local minima of F correspond to

metastable states; they can exist for
finite amounts of time, but given
enough time, thermal fluctuations
should drive the system to a global
minimum of F .

To understand phase transitions as Landau did, we look at how
the free energy density behaves as the magnetization is varied away
from its equilibrium value (2.1). Let m be the variable magnetiza-
tion, which we imagine we can vary independently of h. We write
Landau’s free energy density as A(T, h, m). Let us assume that A is
a polynomial in m, e.g.

A(T, h, m̄) = −hm +
1
2
A2m2 +

1
4
A4m4 +

1
6
A6m6 + · · · . (2.2)

For simplicity, in (2.2) we have assumed that, in the absense of an
external field (i.e. h = 0) the system does not have a preferred direc-
tion and therefore is an even function of m, and also that the term
linear in h is sufficient to account for a weak, external magnetic
field. There are models where cubic or other odd powers of the or-
der parameter can appear in the free energy.6 We define our energy 6 As an exercise, you may wish to

consider how the discussion below
would be altered by the addition of a
term 1

3 A3m3.

scale so that no constant term appears in (2.2). The magnetization
of the equilibrium state m is equal to the value of m for which A is
a global minimum: A(T, h, m) = F (T, h).

The Ai coefficients in (2.2) are functions of temperature. In fact,
Landau made the assumption that they are all analytic in T − Tc.
Although this is ultimately incorrect, one still develops a quali-
tatively useful description of phase transitions. In particular, we
assume that the critical temperature is defined the point where the
coefficient of m2 vanishes linearly: as T → T−c ,

A2 ∼ T − Tc . (2.3)

Let us consider two cases described by (2.2) with h = 0. Ne-
glecting terms higher order than m6, let us assume A6 > 0 for all
temperatures.
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The case A4 > 0 gives rise to a second order, or continuous,
phase transition: as the temperature is lowered (usually) A2 de-
creases from a positive value to zero when T = Tc. For T < Tc,
A2 < 0 and there are two degenerate minima at m = ±m0 6= 0,
as shown in Figure 2.1. The degeneracy is broken by any external
magnetic field, however small. For example, if h = ε > 0 then
the m = m0 > 0 state will be stable and the m = −m0 state will
only be metastable as it is just a local minimum of A, not the global
minimum.

A

m

A

m

Figure 2.1: Free energy function A(m)
above and below a continuous phase
transition.

Neglecting terms higher order than m4, we can obtain the equa-
tion of state from A

∂A
∂m

∣∣∣∣
m=m

= 0 =⇒ m(A2 + m2A4) = h . (2.4)

For h = 0, the solutions to the equation of state are m = 0 and

m = ±
√
−A2
A4

. The first solution is only a solution for A2 > 0 when
the second derivative of A is positive at m = 0. The other solutions
are only real when A2 ≤ 0. From (2.3) that, as T → T−c ,

m ∼ (Tc − T)β , with β =
1
2

. (2.5)

This β is one of several critical exponents, and its symbol is by con-
vension the same as that used for the inverse temperature; the fact
that the critical exponent β is dimensionless and the inverse tem-
perature β has units of inverse energy should be enough context to
avoid confusion.

A

m

A

m

A

m

Figure 2.2: Free energy function A(m)
as coefficients vary across a first order
phase transition. In the top figure
the minimum corresponds to the
disordered phase, in the bottom figure
the ordered phase is preferred, and at
the phase transition (middle figure)
the ordered and disordered phases can
coexist.

Looking at the equation of state for T = Tc, i.e. for A2 = 0, (2.4)
reads A4m3 = h, or as h→ 0,

m ∼ |h| 1δ , with δ = 3 (2.6)

which defines the critical exponent δ. The magnetic susceptibility
also has a corresponding critical exponent, γ. For T > Tc we can
expand about m = 0, neglecting the m3 term in (2.4) to find

χ =
∂m
∂h

∣∣∣∣
h=0
∼ (T − Tc)

γ , with γ = 1 . (2.7)

One finds the same critical exponent for the susceptibilty for T <

Tc, but then one should expand about m = m0.
If A4 < 0 then the system can have a first order phase transition.

This is seen in A(T, h, m) when there are minima at m = 0 and
m = m0 (Figure 2.2). With the normalization of (2.2) such that
A = 0 for m = 0, we find the ordered phase occurs when there are
nonzero solutions to

m2(A2 −
1
2
|A4|m2 +

1
3
A6m4) = 0 .

In other words, when the discriminant of the quadradic (in m2)
term is positive, i.e. 1

4 A2
4 − 4

3 A2 A6 > 0, there are nonzero solutions
and the ordered phase is preferred. The phase transition occurs
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when 1
4 A2

4 − 4
3 A2 A6 = 0, and the order parameter varies discontinu-

ously across the transition. The coexistence of different phases at the
phase transition is a feature unique to first order phase transitions.

The coefficients A2, A4, etc. of (2.2) are functions of the indepen-
dent variables such as temperature T. Let us also suppose there is
another variable g. Then a phase diagram is the simplest way to sum-
marize the state of a system as a function of T and g. One possible
situation is shown in Figure 2.3. There, for g = 0, the system has
a second order phase transition, corresponding to the case where
A4 > 0. As g is increased from 0, the critical temperature Tc is
a function of g. Along the line described by Tc(g), the coefficient
A2 = 0, while A4 > 0.

TCP

g

T

Tc(g)

T1(g)

Figure 2.3: Phase diagram showing a
tricritical point (TCP). The solid line
depicts a first order transition and the
dashed line, a second order transition.

In the situation depicted, A4 is a function of g so that when g
becomes large enough and A4 = 0. This point in the phase diagram
is known as a tricritical point (TCP). Beyond this point, we have the
case where A4 < 0 and we have a line of first order transitions,
T1(g). Along this line, 1

4A2
4 − 4

3A2A6 = 0, as discussed above. (Note
that the A2 = 0 line will naturally continue through the TCP, but
it will lie in the phase where the order has already been broken by
the first order transition.

Critical exponents take on different values at a TCP than at an
ordinary second order transition (sometimes referred to as a critical
point, CP). With A4 = 0 we cannot neglect the m6 term in determin-
ing δ, for example. The T = Tc equation of state is m5 = h, therefore
δ = 5. Critical exponents for critical points and tricritical points are
summarized in Table 2.1.

Table 2.1: Critical exponents at a
critical point (CP) and at a tricritical
point (TCP) according to Landau
theory.

exponent definition CP TCP

α A ∼ |t|2−α 0 1
2

β m ∼ (−t)β 1
2

1
4

γ χ ∼ |t|−γ 1 1

δ m ∼ h1/δ 3 5

Landau’s phenomenological theory of phase transitions is a very
good starting point for thinking about phase transitions. In par-
ticular, it shows that critical exponents could be the same for wide
varieties of microscopic theories, as long as they result in similar
free energies A. By making a few assumptions about how the co-
efficients Ai depend on temperature (and any other independent
variables) one can make numerical predictions for the critical ex-
ponents. It turns out that the numerical predictions are often the
incorrect values to describe experimental data (but not in all cases).
We will see that Landau’s assumptions about analyticity of the free
energy coefficients is the culprit, and we will develop a framework
for understanding why.





Ising model

Some solids, such as iron and nickel, can be magnetized. Atomic
magnetic moments align with each other, even in the absence of an
external magnetic field. This property is called ferromagnetism. If
such a solid is heated above its so-called Curie temperature a phase
transition occurs, and the magnetization is lost and they become
paramagnetic.

The Ising model is a very simplified model of the ferromagnetic-
paramagnetic phase transition, yet it is very instructive. The degrees-
of-freedom σi = ±1, on i = 1, . . . , N sites, these are interpreted as
spins either aligned or anti-aligned in some fixed direction. The
spins are located on fixed lattice points; we assume a square-lattice
in D dimensions, but one could consider a triangular 2D Ising
model, for example. The Hamiltonian is written as

H = −J ∑
〈ij〉

σiσj − h ∑
i

σi (3.1)

where ∑〈ij〉 means to sum over every pair of nearest-neighbor spins.
J is the exchange energy and h represents the external magnetic
field (in energy units). For the ferromagnetic model the exchange
energy J > 0: the energy is lowered by having neighboring spins
aligned. Negative J yields the anti-ferromagnetic model, which we
will not consider here. The external magnetic field h can have either
sign.

We will study the statistical physics of the Ising model. The
partition function can be written

Z = ∑
σ

exp (−βH) (3.2)

where the sum is over all configurations of the N spins and could
be written more verbosely as

∑
{σj}

or ∑
σj=±1,∀j

.

3.1 Solution of one-dimensional model

In one dimension the Ising model partition function is

Z = ∑
σj=±1,∀j

N−1

∏
i=1

exp β

[
Jσiσi+1 +

h
2
(σi + σi+1)

]
(3.3)
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Assume periodic boundary conditions, i.e. σN = σ0. Define

Wσiσj = exp β

[
Jσiσj +

h
2
(
σi + σj

)]
(3.4)

then
Z = ∑

σj=±1,∀j

Wσ0σ1Wσ1σ2 · · ·WσN−1σ0 (3.5)

This expression is of the form of a trace of a product of matrices,
Tr ABC = ∑i,j.k AijBjkCki. For the Ising model the 4 possible Wσiσj

make up a 2× 2 transfer matrix

W =

(
eβJeβh e−βJ

e−βJ eβJe−βh .

)
(3.6)

The eigenvalues of W are straightforward to find; let us denote
them

λ± = eβJ cosh βh±
√

e2βJ sinh2 βh + e−2βJ . (3.7)

Noting that λ+ > λ−, in the large N limit we can express the
partition function as

Z = Tr WN = λN
+ + λN

− = λN
+

[
1 +

(
λ−
λ+

)N
]
≈ λN

+ . (3.8)

Free energy per spin

f =
F
N

= − 1
Nβ

log Z

= −T log λ+

= −T log
[

eβJ cosh βh +
√

e2βJ sinh2 βh + e−2βJ
]

(3.9)

As T → 0 (β → ∞) we can neglect the smaller of exp(±βh) in the
sinh and cosh and the exp(−2βJ) in the square root to find (written
here for the case h ≥ 0)

lim
T→0

f = − lim
T→0

T log eJ/Teh/T = −J − h . (3.10)

We see from this that at T = 0 all spins are aligned and that f
approaches its minimum value continuously; there is no finite T
phase transition.

The magnetization (per spin)

m =
1
N

〈
∑

i
σi

〉

=
1

NZ ∑
σ

∑
i

σie
βJ ∑〈ij〉 σiσj+βh ∑i σi

=
1

NZ ∑
σ

1
β

∂

∂h
eβJ ∑〈ij〉 σiσj+βh ∑i σi

=
1

Nβ

∂

∂h
log Z

= T
∂

∂h
log λ+

=
eβJ sinh βh√

e2βJ sinh2 βh + e−2βJ
. (3.11)
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The expression simplifies in the high T limit (keeping J fixed,
but leaving h arbitrary): m → tanh βh. As T is lowered, m(h) ap-
proaches a step function. If one first takes the T → 0 limit before
taking h→ 0 we find

lim
h→0±

lim
T→0

m =
sinh βh√
sinh2 βh

= ±1 . (3.12)

Thus we find that, for h = 0, m = 0 unless we first take the zero
temperature limit. The D = 1 Ising model is paramagnetic at
all finite temperatures, but has a phase transition at T = 0 to a
ferromagnetic ground state.

Let us find the same result using the transfer matrix. We can
straightforwardly diagonalize W. Since W is symmetric, the diago-
nalization is done via a rotation matrix P

W = PΛP−1 (3.13)

where

Λ =

(
λ+ 0
0 λ−

)
and W~e± = λ±~e± (3.14)

The eigenvectors, and hence the rotation matrix, can be found ex-
plicitly

P = (~e+,~e−) =

(
cos φ − sin φ

sin φ cos φ

)
(3.15)

however it is quicker to observe that cot 2φ = e2βJ sinh βh.7 7 Exercise: Prove that the angle φ
which rotates from the standard basis
to the eigenvector basis of a symmetric

matrix W =

(
A B
B C

)
, satisfies

cot 2φ = A−C
2B .

Define

S =

(
1 0
0 −1

)
(3.16)

then

m = 〈σi〉

=
1
Z ∑

σ

Wσ0σ1 · · ·Wσi−1σi σiWσiσi+1 · · ·WσN−1σ0

=
Tr SWN

Tr WN . (3.17)

After diagonalizing

m =
Tr P−1SPΛN

Tr ΛN

=
cos 2φ(λN

+ − λN
−)

λN
+ + λN

−
. (3.18)

In the large N limit

m = cos 2φ =
eβJ sinh βh√

e2βJ sinh2 βh + e−2βh
(3.19)

as we found before.
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The transfer matrix method generalizes nicely to allow us to
calculate more complicated expectation values. Let us look at the
connected Green’s function or correlation function

G(r) = 〈σ0σr〉c = 〈σ0σr〉 − 〈σ0〉〈σr〉 . (3.20)

The word “connected” has its origins in Feynman diagrams, which
will be encountered later (possibly) and in QFT.

〈σ0σr〉 =
1
Z ∑

σ

σ0Wσ0σ1 · · ·Wσr−1σr σrWσrσr+1 · · ·WσN−1σ0

=
Tr SWrSWN−r

Tr WN

=
Tr P−1SP Λr P−1SP ΛN−r

λ+
+ . . .

= cos2 2φ + sin2 2φ

(
λ−
λ+

)r
. (3.21)

Thus

G(r) = sin2 2φ

(
λ−
λ+

)r
.

Define
ξ =

1
log(λ+/λ−)

. (3.22)

For h = 0,
λ+

λ−
=

1
tanh βJ

⇒ ξ ∼ e2βJ = e2J/T (3.23)

which diverges as T → 0, showing that there indeed is a 2nd order
phase transition at T = 0. The Green’s function behaves like

G(r) = sin2 2φ e−r/ξ (3.24)

so for r � ξ the spin degrees-of-freedom are uncorrelated. Note
that as ξ diverges, we see the onset of long-range order.

As an exercise, use (3.11) and translational invariance to show
that the magnetic susceptibility per spin can be written

χ =
∂m
∂h

∣∣∣∣
T
= β ∑

r
G(r) . (3.25)

3.2 Mean field theory

Consider the Ising model in D dimensions, with Hamiltonian

H = −J ∑
〈ij〉

σiσj − h ∑
i

σi . (3.26)

Once again, the first sum is over all nearest-neighbour pairs. Let us
denote by q the number of nearest neighbors any given site has; e.g.
for sites on a square/cubic/hypercubic lattice, each site has q = 2D
nearest neighbours.

Let m be the mean magnetization, and denote the difference
from the mean of the spin at site i by

δσi = σi −m . (3.27)
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Then the interaction term in H can be rewritten

σiσj = (m + δσi)(m + δσj)

= m2 + m(δσi + δσj) + δσi δσj

= −m2 + m(σi + σj) + δσi δσj . (3.28)

The mean field approximation is made by neglecting the last term,
resulting in the mean-field Ising Hamiltonian8 8 Up to the σ-independent term,

this could have been derived just by
replacing ∑〈ij〉 σiσj → qm ∑i σi in
(3.26). This term is needed to get the
correct free energy as a function of m.
However, this term is not needed for
mean-field expectation values or for
computations involving derivatives
with respect to σj.

H =
1
2

qJNm2 − (qJm + h)∑
i

σi . (3.29)

Hence the partition function can be solved in the MFT approxima-
tion

Z = e−βqJNm2/2 ∑
σ

eβ(qJm+h)∑i σi

= e−βqJNm2/2 [2 cosh β(qJm + h)]N . (3.30)

We may similarly obtain an expression for the magnetization

m = 〈σj〉 =
∑σj=±1 σje

β(qJm+h)σj

∑σj=±1 eβ(qJm+h)σj

= tanh β(qJm + h) . (3.31)

In order to investigate solutions to this transcendental equation, let
us rearrange it as

tanh−1 m =
qJ
T

m +
h
T

(3.32)

noting that the right-hand side (RHS) is the equation of a line with
gradient qJ/T and y-intercept h/T.

−1.0 −0.5 0.0 0.5 1.0

m

−3

−2

−1

0

1

2

3

h = 0

tanh−1m

T > Tc

T < Tc

Figure 3.1: Graphical solution of mean
field magnetization, h = 0 case.

First considering the h = 0 case, we see m = 0 is always a real
solution. Since

d
dm

tanh−1 m =
1

1−m2 ≥ 1 for − 1 < m < 1 (3.33)

we immediately see that if qJ/T < 1, there will be no other in-
terections of the RHS of (3.32) with the LHS (e.g. see Fig. 3.1). For
temperatures such that qJ/T > 1 there are 2 nonzero solutions; let
us denote these as m = ±m0. We will later discuss the stability of
these solutions, and it turns out that the physical solutions are

m =

{
±m0 for T < Tc

0 for T > Tc
(3.34)

where Tc = qJ/k.

−1.0 −0.5 0.0 0.5 1.0

m

−3

−2

−1

0

1

2

3

h > 0

tanh−1m

T > Tc

T < Tc

Figure 3.2: Graphical solution of mean
field magnetization, h 6= 0 case.

In the h 6= 0 case, there is always a solution with m 6= 0 for
all temperatures (Fig. 3.2). Therefore, there is no phase transition
to a paramagnetic state. As T decreases from large to small, the
physical solution moves smoothly from small, but finite m to large
m, with the same sign as h. At some point solutions with m having
the opposite sign to h appear, but we will see later that these are
not realized physically.
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Let us investigate critical behaviour which occurs in the h → 0
limit. Then (3.32) is given by

tanh−1 m =
Tc

T
m .

Expanding about small m and using T/Tc = 1 + t we find

m +
1
3

m3 =
m

1 + t
m(3t + m2) = 0

where in obtaining the first line we neglect terms of O(m5) and in
the second we neglect another small term of O(tm3).

m =

{
±
√
−3t for T < Tc

0 for T > Tc
. (3.35)

Approaching Tc from the T < Tc, the magnetization behaves as

m ∼ ±(T − Tc)
1
2 . (3.36)

The singularity in dm
dT as T → T−c indicates a phase transition.

Let us examine the magnetic susceptibility at h = 0. Define

χ =
∂m
∂h

∣∣∣∣
h=0

. (3.37)

Now

tanh−1 m =
Tc

T
m +

h
T

(1 + t) tanh−1 m = m +
h
Tc

. (3.38)

For T > Tc the magnetization is very small, so we can approximate
tanh−1 m ≈ m in (3.38) and find

m =
h

T − Tc
=⇒ χ ∼ (T − Tc)

−1 . (3.39)

For T < Tc, the magnetization is very close to the zero-field magne-
tization m0 = ±

√
−3t, so let m = m0 + ε. Eq. (3.38) is then

(1 + t)
[

m0 + ε +
1
3
(m0 + ε)3 + . . .

]
= m0 + ε +

h
Tc

which implies

ε = − h
2(T − Tc)

=⇒ χ =
1

2(Tc − T)
∼ (Tc − T)−1 . (3.40)

Set T = Tc and ask how m vanishes as h → 0. Using the fact that m
vanishes at the critical temperature, eq. (3.38) implies

m =

(
3h
Tc

) 1
3
∼ h

1
3 . (3.41)
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The comparison between mean field theory and exact (or numer-
ical) results is not very encouraging. Define the critical exponents β,
γ, δ as follows

m ∼ (Tc − T)β for T < Tc

χ ∼ |T − Tc|−γ

m ∼ h
1
δ . (3.42)

Table 3.2: Comparison of critical
exponents and temperature.

MFT D = 2 Ising D = 3 Ising

β 1
2

1
8 0.3 . . .

γ 1 7
4 1.2 . . .

δ 3 15 5.0 . . .

Tc 4J 2.27J

As shown in Table 3.2, the mean field results are not very close
for D = 2, but we observe they are a bit better for D = 3. By the
end of the course we will see in more detail why mean field theory
works better in larger numbers of dimensions. In the meantime,
we note that we will wish to go beyond mean field theory in order
to understand critical exponents in 2, and even 3, dimensions. We
cannot neglect the effects of fluctuations in the way done here.





Scaling

Landau’s assumption that the free energy is a polynomial in the
order parameter, with coefficients analytic in T − Tc leads to the
correct power law behaviour, albeit with generally incorrect critical
exponents (below some upper critical dimension). In this chapter,
we first derive the mean field exponents from Landau’s free energy
using simple scaling arguments. We then relax Landau’s analyticity
assumption and show the effect on the scaling analysis and the
critical exponents.

For this discussion we focus only on second order transitions,
such that A4 > 0 in (2.2) and we may neglect higher order terms.
The steps in this chapter may be repeated, keeping the A6m6 term,
to study the critical exponents near a tricritical point.

4.1 Mean field

Consider a scaling transformation, where we scale our basic length
unit, the lattice spacing a, by a factor b

a→ a′ = ba (4.1)

while keeping physical, macroscopic quantities such as the free
energy or the system size fized. The requirement that a physi-
cal length L remain fixed means that the number of degrees will
change,9 e.g. in 1 dimension 9 Later we will see explicit examples

where we thin out the degrees-of-
freedom by neglecting every other
spin. If the correlation length is much
larger than the lattice spacing, then
neighboring degrees-of-freedom are
highly correlated and we can use a
single spin as a representative of its
neighbors.

L = Na = N′a′ .

In D dimensions we look at the number of spins in a fixed volume

LD = NaD = N′a′D . (4.2)

While the free energy remains constant under this scaling, the free
energy per spin transforms as

F → F ′ = bDF . (4.3)

and equivalently, A → A′ = bDA. We say that the scaling dimension
of F (and A) is −D. The sign is just a convention.

Let us introduce some simplifying notation. We use square
brackets to denote scaling dimension: [Q] = q implies the quan-
tity Q has scaling dimension q, i.e.

[Q] = q =⇒ Q→ Q′ = b−qQ . (4.4)
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Suppose the magnetization (our order parameter) scales under
the transformation (4.1) with dimension dm: [m] = dm. Together,
[A] = −D and [m] = dm implies that a term Anmn appearing in
(2.2) has a coefficient with scaling dimension

[An] = −(D + ndm) . (4.5)

Similarly [h] = −D − dm. In mathematical terms, the underly-
ing assumption behind this scaling hypothesis is that A(m) is a
homogenous function.

In order to find illuminating scaling forms for the free energy A
we will carry out a standard dimensional analysis, using scaling
dimensions. First we find a combination of h, A2, and A4 which is
invariant under (4.1). Let us raise A2 and A4 to powers p2 and p4,
respectively. Then[

hAp2
2 A

p4
4

]
= −D(1 + p2 + p4)− dm(1 + 2p2 + 4p4) . (4.6)

Requiring the scaling dimension of hAp2
2 A

p4
4 to be equal to 0 for

general D and dm implies p2 = − 3
2 and p4 = 1

2 .

In Landau theory, at a second order transition A2 ∼ t = (T−Tc)
Tc

(2.3) while A4 remains positive and, we assume, slowly varying
in T. Therefore, in Landau’s approximation, the scale invariant
combination of interest is

h
|t|3/2 . (4.7)

We introduce the absolute value signs since we will treat the
T → T−c and T → T+

c cases separately, defining different sets of
functions.

We will be interested in approaching the critical point (t, h) =

(0, 0) along two different lines: 1. setting h = 0 first and studying
t→ 0; 2. setting t = 0 and then h→ 0.

1. In studying singularities as t → 0 with the intention of taking
h → 0 first, there will be some unknown function which depends
on the scale invariant ratio (4.7). To see how the free energy
behaves near the critical point we need a quantity with scaling
dimension D. Using only A2 and A4 (since we need something
useful when h = 0) we find[ |A2|2

A4

]
= −D .

Near t = 0, A2 ∼ |t| while A4 is assumed to be slowly varying,
therefore the scaling hypothesis implies the equilibrium free
energy vanishes quadratically as t → 0, holding the ratio h/|t|3/2

fixed; i.e.

F = c1|t|2 f≷

(
h
|t|3/2

)
(4.8)

with f<(0) = f>(0) and c1 a constant.
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2. Studying singularities as h → 0, perhaps with t = 0, then it is
sensible to use the reciprocal of (4.7) as the independent scale-
invariant ratio. At t = 0 only the following has scaling dimension
−D [

h4/3

A1/3
4

]
= −D .

Therefore, the scaling form useful to study the h → 0 critical
behaviour is

F = c2 h
4
3 g≷

(
|t|3/2

h

)
(4.9)

again with g<(0) = g>(0) and c2 a constant.

Note that the exponents of t and h in (4.8) and (4.9) are com-
pletely determined from the scaling hypothesis and should there-
fore be universal. On the other hand the constants c1 and c2, and
the functions f≷ and g≷ are nonuniversal.

We can obtain mean field exponents from the scaling forms (4.8)
and (4.9).

m = − ∂F
∂h

∣∣∣∣
h→0+

∼ |t|2 1
|t|3/2 f ′≷(0

+)

implies m ∼ |t|β with β = 1
2 for the ordered phase, when t < 0 (i.e.

f ′<(0+) > 0). Of course m = 0 for the disordered phase, when t > 0
and therefore f ′>(0+) = 0. The susceptibility

χ =
∂m
∂h
∼ |t|−γ

with γ = 1. Finally, the specific heat

C = −T
∂2F
∂T2

∣∣∣∣
h=0
∼ tα

with α = 0.

4.2 Departure from mean field

In fact the mean field scaling form of § 4.1 does not fit experimental
or numerical results in most cases. However, one does find agree-
ment with data if we relax the values of the exponents we inferred
from dimensional analysis, so that

F = |t|2−α f≷

(
h
|t|∆

)
(4.10)

(we also absorbed any dimensionful constant into the function f≷).
The critical exponents now differ from their mean field values.

m = − ∂F
∂h

∣∣∣∣
h→0+

∼ |t|2−α−∆ =⇒ β = 2− α− ∆

χ|h=0 =
∂m
∂h

∣∣∣∣
h→0+

∼ |t|2−α−2∆ =⇒ γ = −2 + α + 2∆ .



26

We can rearrange the expressions above to obtain

α + 2β + γ = 2 (4.11)

β + γ =∆ . (4.12)

The first of these expressions is known as Rushbrooke’s identity
since it satisfies the inequality derived using only thermodynamic
arguments.10 10 C.f. examples sheet. The observation

that this and other inequalities derived
from thermodynamics appeared to be
satisfied with equality inspired much
of the theoretical progress in critical
phenomena.

To find δ, we again need to focus on how F behaves has h →
0 after the t → 0 limit has already been taken. Looking at the
magnetization in the ordered phase, t < 0, we see

m = |t|β f ′<

(
h
|t|∆

)

= h
β
∆

( |t|∆
h

) β
∆

f ′<

(
h
|t|∆

)
≡ h

β
∆ φ

( |t|∆
h

)
(4.13)

where the last line implicitly defines the new function φ. For t = 0
and assuming φ(0) is finite, we see m ∼ hβ/∆, and we conclude that

δ =
∆
β
= 1 +

γ

β
. (4.14)

This is known as Widom’s identity.
The exponents α and ∆ will be determined using renormaliza-

tion group theory. More precisely, we will determine the scaling
dimensions yt and yh, defined such that

[t] = −yt and [h] = −yh . (4.15)

With these definitions

[F ] = −D =⇒ 2− α =
D
yt

(4.16)[
h
|t|∆

]
= 0 =⇒ ∆ =

yh
yt

. (4.17)

Further reading

Arguments similar to those presented in § 4.1 above are given by
Goldenfeld11 in his Chapter 7, including a brief explanation (at 11 N Goldenfeld. Lectures on Phase

Transitions and the Renormalization
Group. Addison-Wesley, 1992. ISBN
0-201-55409-7

the same level as here) of how to understand the failure of naive
dimensional analysis when fluctuations become important. Sec-
tion 4.1 of Kardar12 gives a nice, alternative derivation of the scal- 12 M Kardar. Statistical Physics of Fields.

Cambridge University Press, 2007.
ISBN 978-0-521-87341-3

ing form beyond mean field theory based on the assumption that
the free energy is a homogeneous function. This was the original
approach taken by Widom. The scaling laws are also derived in
§§ 8.1-2 of Goldenfeld.



Real space renormalization

In this chapter we give a derivation of the scaling behaviour conjec-
tured in § 4.2. Given a microscopic model, such as the Ising model,
we carry out a renormalization group transformation in real space.
We will study those which can be thought of as “blocking trans-
formations” The idea is to remove some degrees-of-freedom while
maintaining the critical behaviour of the orginal model.

This procedure can be understood intuitively. If the correlation
length is very large compared to the spacing between degrees-of-
freedom, then we should be able to represent a neighborhood of
correlated degrees-of-freedom by a single variable. The quantitative
details carry some interesting features which may seem surprising,
but correctly explain universality of critical exponents.

Below we illustrate the main ideas with a simple, solvable exam-
ple, the Ising model in one dimension. Afterward, we discuss the
general theory, keeping in mind that most models cannot be solved
exactly. Nevertheless, there are reasonable approximations which
can be made and provide a method for quantitative understanding
of critical phenomena in many systems. Furthermore, these ideas
underpin the renormalization of quantum field theories.

5.1 D = 1 Ising model

Consider 2 one-dimensional lattices, both with periodic boundary
conditions, one lattice with N = 2k sites and the other with N′ =
2k−1 sites. The couplings are respectively J, h and J′, h′.

We will relate the two lattice using a blocking function T(σ′, σ),
where σ and σ′ are the Ising spins, equal to ±1, on the respective
lattices. The blocking function determines the mapping between the
collection {σ′`}, ` ∈ [1, N′] of spins on the “blocked” lattice and the
collection of orginal spins {σj}, j ∈ [1, N].

One time of blocking procedure is called a majority rule trans-
formation: we require that a group of nearby spins on the original
lattice be represented by a blocked spin which is aligned with the
majority of the original group of nearby spins (perhaps “flip a coin”
in case of a tie). This type of procedure makes more sense for a
model with more than 2 neighbors. Here let us choose T(σ′, σ) to
be a decimation procedure: we require that σ′` = σ2`. This procedure
eliminates, or “thins out” σ2`+1, the spins on odd sites of the orig-
inal lattice. The decimation blocking function described above can
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be written mathematically as

T(σ′, σ) =
N′

∏
`=1

δσ′`σ2`
(5.1)

with δαβ the Kronecker δ. Note that

∑
σ′

T(σ′, σ) = 1 .

Let us assume that the Hamiltonians for both the original and
blocked theories take the same form

H( J̃, h̃, Ñ, σ̃) = − J̃ ∑
n

σ̃nσ̃n+1 − h̃ ∑
n

σ̃n (5.2)

where the tilde stands for either unprimed or primed variables.
Then the renormalization group transformation implicitly determines
J′ and h′ by requiring that the partition functions for the two theo-
ries are equal. This can be done looking at a particular configura-
tion of blocked spins and demanding that

e−βH(J′ ,h′ ,N′ ,σ′)−βN′K′ = ∑
σ

T(σ′, σ) e−βH(J,h,N,σ)−βNK . (5.3)

We can check that the partition functions are indeed equal

Z(J′, h′, N′, σ′) = ∑
σ′

e−βH(J′ ,h′ ,N′ ,σ′)−βN′K′

= ∑
σ′

∑
σ

T(σ′, σ) e−βH(J,h,N,σ)−βNK

= ∑
σ

e−βH(J,h,N,σ)−βNK = Z(J, h, N, σ) . (5.4)

Recall the transfer matrix elements for the Ising model were
given to be (3.4)

Wσiσj = exp β

[
Jσiσj +

h
2
(
σi + σj

)]
e−βK .

Let us introduce the shorthand z = eβJ , µ = eβh, and k = e−βK. Then
the transfer matrix (3.6) can be written

W = k

(
zµ z−1

z−1 zµ−1

)

and similarly for W ′, with appropriate definitions for z′, µ′, and k′.
Thus Z(J, h, N, σ) = Tr WN and Z(J′, h′, N′, σ′) = Tr W ′N

′
. The term

in (5.4) containing σ′` and σ′`+1 reads

W ′σ′`σ′`+1
= ∑

σ2`+1

δσ′`σ2`
δσ′`+1σ2`+2

Wσ2`σ2`+1Wσ2`+1σ2`+2

W ′ = W2 . (5.5)

That is, the blocked transfer matrix is equal to the original transfer
matrix squared. Equating matrix elements, that implies the follow-
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ing relations between couplings

k′z′µ′ = k2
(

z2µ2 +
1
z2

)
k′

z′
= k2

(
µ +

1
µ

)
k′z′

µ′
= k2

(
z2

µ2 +
1
z2

)
.

Define x = z−4 = e−4βJ , y = µ−2 = e−2βh, and w = k−4 = e4βK, and
similarly for x′, y′, and w′, then W ′ = W2 implies

x′ =
x(1 + y)2

(x + y)(1 + xy)

y′ =
y(x + y)
1 + xy

w′ =
w2x2y2

(1 + y)2(x + y)(1 + xy)
. (5.6)

The set of equations (5.6) are the renormalization group equations for
the transformation described above.

Let us study the renormalization group equations by consider-
ing the effect of repeated iterations of the transformations. Given
some initial (x, y, w), we obtain (x′, y′, w′) which we can then use as
new inputs to the renormalization group equations to obtain new
values (x′′, y′′, w′′), and so on. In this way we map out trajectories
in coupling constant space. Some example trajectories are shown in
Fig. 5.1.

0.0 0.2 0.4 0.6 0.8 1.0

x

0.0

0.2

0.4

0.6

0.8

1.0

y

Figure 5.1: Renormalization group
trajectories in the x-y plane for several
different initial values of (x, y), indi-
cated by different colours and symbols.
Iterations of the renormalization group
equations (5.6) follow points along a
line from left to right.

We are especially interested in fixed points of the renormaliza-
tion group equations. Are there any values of (x, y, w) such that
(x′, y′, w′) = (x, y, w)? In the case of (5.6) we can easily check that
there are two classes of fixed points.

1. x = 1 ∀y. Here βJ = J/T = 0 which implies the system is at
infinite temperature. The spins are decoupled, or random.

2. (x,y) = (0,1) implying T = 0 and h = 0.

The correlation length ξ, like other macroscopic properties,
should remain fixed when measured in physical units. Therefore,
when measured with respect to the successively growing lattice
spacings of each blocking step, the correlation length will generally
decrease. That is

a 7→ bp a =⇒ ξ 7→ ξp = b−pξ . (5.7)

At a fixed point of the RG transformation, the coupling constants
are unchanged, so the correlation length is fixed, not just in physi-
cal units but also lattice units: ξp+1 = ξp. Therefore, either ξ = 0
or ξ = ∞. In the first case, degrees-of-freedom are independent
of their neighbours; they are randomized, as they would be in an
infinite temperature system, or one with all interactions turned off.
We say a fixed point with ξ = 0 is trivial. Nontrivial fixed points
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are those where ξ = ∞; these correspond to second order phase
transitions.

Linearize about the fixed points. In case (i), we let x = 1− ε for
all y, with 0 < ε � 1. Then after one RG step ε′ = ε2y/(1 + y)2.
There is no linear term and convergence to the infinite temperature
limit is especially fast.

In case (ii), let x = ε and y = 1− η then to linear order(
ε′

η′

)
=

(
4 0
0 2

)(
ε

η

)

The RG transformation is already diagonal and we can read off the
eigenvalues 4 and 2. It is usual to express the eigenvalues as powers
of b, from which we infer critical exponents

ε′ = byt ε and η′ = byh η

with yt = 2 and yh = 1 (since b = 2).
Let us investigate the role of K = 1

4 T log w. The free energy per
spin can be inferred from (5.4) to be

F (J, h, K) = f (J, h) + K

where
f (J, h) = − 1

Nβ
log Z(J, h, K = 0, N) .

After blocking one step

exp(−βNF (J, h, K)) = exp(−βN′F (J′, h′, K′))

implying

F (J, h, K) =
N′

N
F (J′, h′, K′) = b−1F (J′, h′, K′) .

After p steps, and introducing the shorthand up = (Jp, hp) such that
u0 = (J, h), u1 = (J′, h′), etc.,

F (u0, K0) = b−pF (up, Kp)

or
f (u0) = b−p f (up) + b−pKp − K0 .

We can interpret the Kp term as the contribution to the free energy
from those degrees-of-freedom which have been thinned out by the
RG transformation. From K = 1

4 T log w and defining the function
g(x, y) so that the last line of (5.6) reads

w′ = (weg(x,y))b

then Kp = bKp−1 + bg(up−1) or

b−pKp =
p−1

∑
q=0

b−qg(uq) + K0 .
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Therefore

f (u0) = b−p f (up) +
p−1

∑
q=0

b−qg(uq) . (5.8)

Near critical point (x, y) = (0, 1), that is for (x, y) = (ε, 1− η)

w′ =
1
4

w2ε[(1− 2ε) + . . .]

K′ = 2K + kT
(

1
4

log ε− 1
2

log 2− 1
2

ε + . . .
)

g(u) = kT
(

1
8

log ε− 1
4

ε− 1
4

log 2 + . . .
)

(5.9)

The blocking transformation of the D = 1 Ising model intro-
duced most of the ideas of RG analysis in real space. We would
like to build upon this concrete example to develop a more general
theory.

5.2 General theory

Here we generalize the previous section. We work in D dimensions,
considering a system initially defined on a lattice with spacing a.
We will label the degrees-of-freedom (spins or fields) σr where the r
subscript somehow labels its location.

We introduce a generic notation for “operators,” by which we
mean terms which can appear in the Hamiltonian. Let these be
denoted Oi({σ}), where the i simply labels different operators. For
example, we could define operators to represent nearest-neighbour
interactions, next-to-nearest-neighbour interactions, or even some
kind of 3-body operator: O1 = ∑〈jk〉 σjσk, O2 = ∑〈〈JK〉〉 σJσK,
and O3 = ∑`,m,n σ`σmσn (where we leave the details of the 3-body
interaction unspecified here).

We write a generic Hamiltonian as the sum of operators times
associated couplings ui:

H(~u, σ) = ∑
i

uiOi({σ}) . (5.10)

Note we use the vector notation to represent the collection of cou-
plings. This will be natural as we come to think of RG transforma-
tions as trajectories in the space of coupling-constants. The partition
function is

Z(~u, K, N) = ∑
σ

exp [−βH(~u, σ)− βNK] . (5.11)

As in the previous section, Eq. (5.3), the RG transformation with
blocking kernal T(σ′, σ) is defined by requiring

e−βH(~u′ ,σ′)−βN′K′ = ∑
σ

T(σ′, σ) e−βH(~u,σ)−βNK . (5.12)

This defines a mapping of original couplings ~u to new values, ~u′, in
the blocked Hamiltonian. If we want to consider multiple iterations
of the RG transformation, we will replace dashes by a subscript, as
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in ~up, to represent the coupling constant vector after p iterations of
the RG transformation. We write the generic RG transformation,
going from the pth to the (p + 1)st iteration as

~up 7→ ~up+1 = R(~up) . (5.13)

Under a blocking transformation, the lattice spacing

a 7→ a′ = ba , with bD =
N
N′

(5.14)

(e.g. b = 2 in the D = 1 Ising example). Requiring

Z(~up, Kp) = Z(~up−1, Kp−1)

for all p > 0 implies the free energy density obeys

F(~u0, K0) = b−pDF(~up, Kp) . (5.15)

Writing F(~u, K) = f (~u) + K we have

f (~u0) = b−pD f (~up) + b−pDKp − K0

= b−pD f (~up) +
p−1

∑
q=0

b−qDg(~uq) (5.16)

where
g(~uq) = b−DKq+1 − Kq . (5.17)

We will return to (5.16) soon.
Distances, measured in lattice units, scale with b as

~r 7→~r ′ = b−1~r

for example the correlation length. Unlike in the case of the Ising
model, where degrees-of-freedom are either just ±1, in other theo-
ries it will be necessary, or at least desirable, to scale the variables
σ. These are just summation (or integration) variables inside of
partition functions or expectation values. Therefore, we can relabel
them after blocking if we wish. Furthermore, we can make a change
of variables to rescale the degrees-of-freedom after blocking. This
is most applicable to real-valued variables, as opposed to integer-
valued ones. Thus we can decide to write the spin variables after 1

RG step in terms of the original spins as

σ~r ′ = Ξ(b)σ~r (5.18)

where~r(~r ′) labels the position of the spin in the unblocked (blocked)
lattice. This is equivalent to defining the scaling dimension for σ. If
we define dσ through Ξ = bdσ , then [σ] = −dσ.

For example, consider 2-point correlation function after a b = 2
blocking:

〈σ~rσ0〉(u) = 〈σ′r/2σ′0〉(u
′) = Ξ2(b)〈σr/2σ0〉(u

′) = Ξ2(b)〈σr′σ0〉(u
′)

where the superscripts denote which coupling constants to use
in the expectation value. The vectors~r and~r ′ represent the same
physical displacement, but are measured in different lattice units,
i.e.~r ′a′ =~ra.

G(~r,~u) = Ξ2(b)G(b−1~r,~u′) . (5.19)
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5.3 Linearization near a fixed point

Fixed point
~u∗ = R(~u∗) .

At a fixed point, the physics is unchanged by an RG transformation
– the couplings are unchanged. In particular the correlation length
ξ is unchanged. Under an RG transformation ξ ′ = b−1ξ, so if
ξ ′ = ξ, as it must at a fixed point, then ξ = 0 or ∞.

Linearize by considering the RG transformation near ~u∗. Let

~u = ~u∗ + δ~u and ~u′ = ~u∗ + δ~u′

with δ~u and δ~u′ small.
For ease of writing components we put the index on R as follows

u′i = [R(~u)]i ≡ Ri(~u) .

u∗i + δu′i = Ri(~u∗ + δ~u) = Ri(~u∗) +
∂Ri
∂uj

∣∣∣∣∣
~u∗

δ~uj + . . . (5.20)

Since R(~u∗) = ~u∗,

δ~u′i =
∂Ri
∂uj

∣∣∣∣∣
~u∗

δ~uj ≡ Mij(~u∗)δ~uj . (5.21)

Mij = ∂Ri
∂uj

is the matrix describing the linearized RG transforma-

tion at the fixed point ~u∗. Usually M is diagonalizable and here let
us assume we find real eigenvalues λα along with corresponding
eigenvectors ~eα. In the eigenvector bases we can find the compo-

nents ψ
(′)
α

δ~u = ∑
α

ψα~eα and δ~u′ = ∑
α

ψ′α~eα .

Then (5.21) becomes
ψ′α = λαψα . (5.22)

The ψα are called scaling fields or variables and parametrize the
distance to the fixed point along the ~eα directions. In the D = 1
Ising model these were ψα = x, y.

From the eigenvalues we can infer critical exponents.

yα =
log λα

log b
=⇒ ψ′α = byα ψα . (5.23)

Using the notation of scaling dimensions, [ψα] = −yα.

H(~u) = H(~u∗) + ∑
i

δuiOi({σ})

= H(~u∗) + ∑
α

ψαOα({σ}) (5.24)

where
Oα({σ}) = ∑

i
(~eα)iOi({σ})
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are the scaling operators, linear combinations of the original opera-
tors in H.

The behaviour of the various operators Oα depend on the signs
of each of the yα.

1. yα > 0, |ψα| increases with each RG iteration, flow away from
the fixed point in the ~eα direction. In this case Oα is said to be a
relevant operator.

2. yα < 0, |ψα| decreases, the flow is toward the fixed point in the
~eα. Oα is said to be an irrelevant operator.

3. yα = 0. This is a marginal case, and Oα is said to be a marginal
operator. Higher order, beyond linear, will determine whether
the operator is marginally relevant or irrelevant.

u3

u2

u1

⇠ = 1
u⇤

Figure 5.2: Critical surface (blue) con-
taining a fixed point and renormalized
trajectory (black) leaving the criti-
cal surface at the fixed point, in the
direction of the relevant eigenvector.

u3

u2

u⇤ ⇠ = 1

Figure 5.3: Cross-section of Fig. 5.2.
Cross-section of the critical surface
(blue) and renormalized trajectory
(thick black). The thin black lines
show RG flow with initial conditions
slightly off of the critical surface. The
red line depicts how we might vary the
coupling of a particular Hamiltonian
across a phase transition.

Figure 5.2 illustrates the situation where there are 2 irrelevant
operators and 1 relevant operator. There is a 2-dimensional critical
surface made up by the set of points which, lie on RG trajectories
which flow into the fixed point ~u∗. All of the points on the critical
surface, including the fixed point, describe theories tuned to criti-
cality, i.e. to ξ = ∞. Coming out of the surface from the fixed point,
in the direction of the relevant eigenvector, is a trajectory called the
renormalized trajectory.

Figure 5.3 shows a 2-dimensional cross-section cutting through
~u∗. When we study a specific Hamiltonian and vary one (or more)
of its couplings so that we cross a second-order transition, the cou-
plings move across the critical surface,

Some comments:

1. Every theory with couplings tuned to be on the critical surface
has ξ = ∞, i.e. is at a continuous phase transition.

2. Every such phase transition is equivalent to the one described by
H(~u∗); we see the same critical behaviour. This gives us a greater
understanding of the universality of systems sharing the same
critical exponents.

3. To tune any H(~u) to a phase transition, we need to vary the
couplings of the theory (e.g. by changing the temperature or
external magnetic field) to decrease the relevant variables |ψα|.
Sometimes the number of relevant variables is given a label,
say κ, and can be thought of as the codimension of the critical
surface (or manifold, speaking more generally). Usually κ is just
a few.

We now wish to look at the free energy in the neighborhood of
a fixed point u∗. As in the Ising model and other similar magnetic
systems, let us denote the relevant scaling variables as t and h. Let
ψ represent an irrelevant scaling variable. Let ~u = (u1, u2, u3) be
parameters in the Hamiltonian H.13 The phase transition occurs at 13 It is usual to absorb the inverse

temperature β into the definitions of
the couplings.

h = 0 , t =
T − Tc(ψ)

Tc(ψ)
= 0 .
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Recall the RG transformation R is a mapping in coupling con-
stant space

~up 7→ ~up+1 = R(~up) . (5.25)

We can relate the p-th point in coupling constant space to some
initial point ~u0

~up = R(~up−1) = R(R(~up−2)) = . . . = Rp(~u0) . (5.26)

As we did for the specific case of the Ising model, we divide the
free energy into

F (~up, Kp) = f (~up) + Kp . (5.27)

As before we find

f (~u0) = b−pD f (~up) +
p−1

∑
q=0

b−qDg(~uq) (5.28)

where we write F (~u, K) = f (~u) + K and define g through

Kp = bDKp−1 + bDg(~up−1) . (5.29)

Repeated iterations of the RG transformation should reach the
neighbourhood of the fixed point in a finite number of iterations.
Irrelevant variables flow to their fixed point values quickly. Denote
by p̄ the number of iterations to get near enough to ~u∗ so that a
linear approximation is a good one. Then

F (~u0, K0) = b− p̄DF (~u p̄, Kp) . (5.30)

We can write this as

F (~u0, K0) = B f (att, ahh, aψψ) (5.31)

for the following reasons

1. Near the fixed point ~u∗ let us expand ~u linearly in the scaling
variables

~u p̄ = ~u∗ + (att, ahh, aψψ) . (5.32)

For simplicity we also assume here a diagonal transformation
between the explicit couplings of the Hamiltonian. This is gener-
ally not the case; a 3× 3 matrix is necessary to relate (u1, u2, u3)

to (t, h, ψ), but we do not wish to complicate the notation any
further. Either we can define our coordinates so that ~u∗ is at the
origin, or we could absorb ~u∗ dependence into the definition of
the function f .

2. Choose initial K0 so that K p̄ vanishes.

3. b− p̄D = B is a fixed constant after we fix p̄.

For simplicity we set the uninteresting constants at, ah, aψ, and B
equal to 1 below; this can be interpreted as absorbing them into a
new definition for f .
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The discussion above outlined p̄ RG iterations which gave ~u p̄ in
the neighbourhood of the fixed point, where the RG transformation
could be linearized. Then we tidied up the notation. Now let us
perform another p′ iterations of the RG transformation.

F (~u0, K0) = b−p′D f (bp′yt t, bp′yh h, bp′yψ ψ) +
p′−1

∑
q=0

b−qDg(bqyt t) . (5.33)

Note g only depends on t, not on h (or ψ). We assume this is so
for a well-designed RG transformation. External fields like h (and
presumably whatever ψ represents) typically couple only to long
wavelength modes, so do not contribute to the inhomogeneous
term arising from the thinned-out degrees-of-freedom.

u⇤

uh

ut

u 

⇠ = 1ref
t = 0

Figure 5.4: Given an initial set of
couplings near a critical surface (thick
blue line), the thin black line depicts a
blocking transformations toward the
fixed point, and then to a reference
point as determined by (5.35), for
example.

As the RG trajectory approaches a fixed point, ~up is a slowly-
moving function of p. The trajectory is almost continuous. There-
fore we can treat bp′ (and bq) as a continuous variable, denoted
b̂. This gives us the freedom to choose an arbitrary value for bp′ ,
not necessarily an integer power of b. Then we write the singular
contribution to F (~u0, K0) as

Fs = b̂−D f (b̂yt t, b̂yh h, b̂yψ ψ) . (5.34)

Now we choose a specific value for b̂, one such that we flow to a
reference value for |byt t|. The specific value is not important, but for
convenience let us set b̂ such that

b̂yt t =

{
1 for t > 0
−1 for t < 0

. (5.35)

This is the point denoted at the end of the trajectory in Fig. 5.4. We
need not worry whether this reference point is within the linear
regime: for RG trajectories which approach the fixed point, vastly
many more iterations are made in the linear regime than outside –
if not, then we need to choose a better initial condition!

Given that ψ was assumed to represent an irrelevant variable,
yψ < 0 so b̂yψ ψ ≈ 0. We then have for (5.34)

Fs = |t|D/yt f
(
±1,

h
|t|yh/yt

, 0
)

(5.36)

arriving at the scaling form of the previous chapter (4.10)

F = |t|2−α f≷

(
h
|t|∆

)
.

From this we can identify

f≷(x) = f (±1, x, 0) ≡ f±(x) .
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By differentiating F , we can read off critical exponents

α = 2− D
yt

and ∆ =
yh
yt

β = 2− α− ∆ =
D− yh

yt

γ = 2∆− 2 + α =
2yh − D

yt

δ =
∆
β
=

yh
D− yt

. (5.37)

The inhomogenous term can spoil things. As the RG trajectory
becomes nearly continuous, let s = bqyt |t|. Then

p−1

∑
q=0

b−qDg(byt t)→ |t|D/yt

∫ 1

|t|
ds
∣∣∣∣ ds
dq

∣∣∣∣−1
s−D/yt g(±s)

=
|t|D/yt

yt log b

∫ 1

|t|
ds s−(D−yt)/yt g(±s) . (5.38)

The prefactor |t|D/yt is the same as in the singular term, but we
cannot make general statements about how the integral behaves as
|t| → 0. Sometimes it converges, sometimes it does not. Thus we
see a sign that the Renormalization Group analysis is not a proof of
universality; however, it is a powerful and successful framework for
understanding universal phenomena where they appear.

Making further contact with § 4.2, where we assumed [A] = −D
and [m] = dm. Here we obtain similar scaling dimensions from the
RG flow near a fixed point. The transformation is defined such that

~r 7→~r ′ = b−1r =⇒ [~r] = 1 . (5.39)

By definition of the y exponents:

t′ = byt t =⇒ [t] = −yt (5.40)

h′ = byh h =⇒ [h] = −yh . (5.41)

From (5.36) and [t] = −yt we see that we agree that the free energy
has dimension [F ] = −D.

Further more, it follows from m ∼ |t|β that

dm = [m] = β[t] = −D + yh . (5.42)

The magnetic susceptibility χ = ∂m
∂h then has dimension

[χ] = [m]− [h] = −D + 2yh . (5.43)

Its critical exponent, from χ ∼ |t|−γ is then as given in (5.37).
The correlation length exponent, from ξ ∼ |t|−ν, can be inferred

from the condition that we block to a reference point (5.35); b̂ is
chosen so that |b̂t| = 1. Denote the correlation length in the un-
blocked theory by ξ After a finite number p̄ steps, the theory is in
the linear regime and ξ p̄ = b− p̄ξ. Then we block many times (al-
most continuously), ending up at a reference theory with (much
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shorter) correlation length ξ0. The orginal correlation length is re-
lated to the reference correlation length by

ξ = b p̄ b̂ξ0 . (5.44)

Therefore

ξ ∼ |t|−1/yt =⇒ ν =
1
yt

. (5.45)

Finally the critical exponent η, parametrizing the power-law
behaviour of the correlation function G(r). Later we will further
justify having the following form for G(r)

G(r) ∼ g(r/ξ)

rD−2+η
. (5.46)

Usually, for r > ξ, g(r/ξ) ∝ exp(−r/ξ), i.e. degrees-of-freedom be-
come decorrelated exponentially quickly in the separation between
them, as long as they are separated by at least 1 correlation length.
Near a critical point, though, ξ → ∞ and the correlations fall off
much more slowly, characterized by the η critical exponent.

Referring back to the discussion leading to (5.19), we can see that
the initial p̄ steps of our RG procedure yield

G(~r,~u) =
p̄

∏
q=1

Ξ2(b)G(b− p̄~r,~u∗) . (5.47)

The last factor is universal, say Ĝ(b− p̄), independent of the initial
position in coupling constant space, as long as the flow reaches the
neighborhood of the fixed point. We can define the new correlation
function in this linear region as

Ḡ(~r) =
p̄

∏
q=1

Ξ2(b)Ĝ(b− p̄)

and after a further p blockings to the reference model, with b̂ = bp,
we have

Ḡ(~r) = Ξ2pḠ(b−pr) = b̂2dσ Ḡ(b̂−1r) (5.48)

In the last step we wrote Ξ in terms of the scaling dimension of σ

(see text after (5.18)). From (5.48) we conclude that Ḡ(r) ∼ 1/r−2dσ ,
and that

η = 2− D− 2dσ . (5.49)

Note the 6 critical exponents satisfy 4 scaling laws

α + 2β + γ = 2 Rushbrooke

β + γ = βδ Widom

2− α = νD Josephson

γ = ν(2− η) Fisher . (5.50)

Therefore, one need only measure or calculate any 2 critical ex-
ponents to be able to determine all 6. In this analysis we saw that
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determining yt and yh was sufficient to determine the critical expo-
nents above.

A final remark on dimensions. The 2-point Green’s function G(r)
should carry dimensions of [length]2−D – see (5.46) with η = 0;
we refer to these at the engineering dimension of G(r). For η 6= 0,
one refers to the difference between the scaling dimension and
the engineering dimension as the anomalous dimsension. The short
distance scale, the lattice spacing, implicitly fixes the mismatch in
units, so restoring a explicitly

G(r) ∼ aη g(r/ξ)

rd−2+η
.

Universality is the statement that different short distance details can
lead to the same long distance physics. That is not to say the short
distance physics is totally irrelevant, just that its effects contribute
in a very specific way, observable deviation from naive scaling in
the form of anomalous dimensions, and hence critical exponents
different from mean field predictions.





Landau-Ginzburg theory

In this chapter, we study a model which appears to be quite differ-
ent from the Ising model. However, we will see that it gives, in a
certain approximation, the same critical behaviour as we found for
the Ising model in the mean field approximation. Furthermore, we
will see this theory, due to Landau and Ginzburg, is a framework
for including interactions between fluctuations, and gives a general
field-theoretic approach. The text by Le Bellac gives an introduction
starting from mean field theory and building from there.14. 14 M Le Bellac. Quantum and Statistical

Field Theory. Oxford University Press,
1991. ISBN 0-19-853964-9

6.1 Hamiltonian

Consider a square lattice with spacing a in D dimensions, with N
sites, at each of which there is a scalar variable

−∞ < φi ≡ φ(xi) < ∞ . (6.1)

Let us assume periodic boundary conditions, so that φ(~xi + Lνν̂) =

φ(~xi), with ν̂ a unit vector along one of the lattice axes and Lν the
box-length in that direction.

Let us define a shorthand notation for the forward finite differ-
ence operator

∆νφ(~xi) =
1
a
[φ(~xi + aν̂)− φ(~xi)] . (6.2)

The Hamiltonian (times β, although we absorb this factor into the
definition of the coupling constants) is

H({φi}) = H(φ) = aD
N

∑
i=1

[
1
2
(∆φ(~xi))

2 +
1
2

r0φ2
i +

1
4!

u0φ4
i

]
(6.3)

and the partition function is

Z =
∫ ( N

∏
i=1

dφi

)
e−H(φ)+∑i hiφi . (6.4)

Note hi = h(~xi) allows for nonuniform external magnetic field.
A few comments are in order before a more detailed investi-

gation. First, if we think about a constant field φi = φ0, the dif-
ference term in H vanishes and the exponent in the integrand of
Z takes the form we saw in for the free energy (2.2). Second, for
non-constant φi, the difference term (∆νφ(~xi))

2 introduces a cou-
pling between nearest neighbors as in the Ising model, i.e. a term
proportional to −φ(~xi + aν̂)φ(~xi).
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Having defined the theory on the lattice this way, and motivated
the terms in the Hamiltonian, we will make analysis easier by ap-
proximating the lattice theory by one in the continuum. Thus we
move from a theory of N scalar variables to a scalar field theory.

We have argued a few times in these lectures that, if the corre-
lation length is much larger than the spacing between individual
degrees-of-freedom, then we can replace the original variables by
representative variables. This time we will approximate the highly
correlated variables by a slowly varying continuous field. Thus we
consider there to be a real-valued field φ(~x) for any point in our
spatial volume, ~x ∈ V. We also replace the difference term ∆νφ(~xi)

in (6.3) by ∂νφ(~x), where ∂ν is shorthand for ∂
∂xν

.
Thus we arrive at the Landau-Ginzburg Hamiltonian

H =
∫

dDx
[

1
2
(∇φ)2 +

1
2

r0φ2 +
1
4!

u0φ4
]

. (6.5)

Similar to the discussion in Landau’s theory of phase transitions,
when we study second order phase transitions, we will end up as-
suming that the quadratic coupling r0(T) changes sign as the tem-
perature is varied through the critical temperature while u0(T) > 0
varies slowly. The Hamiltonian (6.5) can be amended, e.g. with a
φ6 term in order to study a tricritical point, but this is beyond what
we will do in these lectures, although you may have an opportunity
to explore this. For the moment we have not introduced a variable
coefficient in front of the derivative term (∇φ)2. We will do so in
the next Chapter, where we will ultimately conclude that we can
choose the coefficient to be fixed as in (6.5).

6.2 Functional differentiation and integration

Let us work in 1 dimension here; the extension to D dimensions is
straightforward. Also let I[φ] be a functional of φ(x). For example, I
could represent one of the terms in (6.5)

∫
dx
(

dφ

dx

)2
or

∫
dx φ2n .

We can define the functional derivative δI
δφ(x) of some functional

I[φ] implicitly by using methods from variational principles. Let ε

be a small parameter and εη(x) be a small variation. Then we can
expand

I[φ + εη] = I[φ] + ε
∫

dx
δI

δφ(x)
η(x) + O(ε2) .

One can use this as a starting point to more carefully prove the
identities we use. The calculus of variations can be built from this
framework, in which the usual algebraic rules for derivatives are
obeyed by the functional derivative.

We may also think of the functional derivative as the continuum
limit of derivatives of I with respect to the function (or field) phi at
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point x:
δI

δφ(x)
= lim

a→0

1
a

∂J
∂φi

. (6.6)

Where J is a discrete version of I. We provide a few examples; for a
given I, we write down a discrete sum J which approaches I in the
continuum limit. From the derivative of J we obtain the functional
derivative of I.

1. Take

I =
∫

dy f (y) φn(y) and J = a ∑
j

f jφ
n
j . (6.7)

Note that the lattice spacing a in the expression for J is neces-
sary to carry the dimensions of length, ensuring J → I in the
continuum limit (assuming it exists). Then

∂J
∂φi

= an fiφ
n−1
i =⇒ δI

δφ(x)
= n f (x)φn−1(x) . (6.8)

2. For

I =
∫

dy
(

dφ

dy

)2
and J = a ∑

j

1
a2 (φj+1 − φj)

2 (6.9)

we have

∂J
∂φi

=
2
a
(2φi − φi+1 − φi−1) =⇒ δI

δφ(x)
= −2

d2φ

dx2 . (6.10)

3.

I =
∫

dy V(φ(y)) =⇒ δI
δφ(x)

= V′(φ(x)) . (6.11)

4.
∂φi
∂φj

= δij =⇒ δφ(x)
δφ(y)

= δ(x− y) . (6.12)

5.

∂J
∂ψi

= ∑
j

∂J
∂φj

∂φj

∂ψi
. =⇒ δI

δψ(x)
=
∫

dy
δI

δφ(y)
δφ(y)
δψ(x)

. (6.13)

Functional integration is the extension of the integral over a
discrete number of variables φi with i ∈ [1, N], to an integration
over all possible field configurations. We write

Dφ = lim
a→0
N (a)

N

∏
i=1

dφi . (6.14)

Here a field-independent normalization N (a) can be introduced to
give something finite in the continuum limit. There are many sub-
tleties which can be important in functional integration; however,
these will not play a role in the physics we study in this course.
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6.3 Landau approximation

Partition function

Z =
∫
Dφ exp

{
−
∫

dDx
[

1
2
(∇φ)2 +

r0

2
φ2 +

u0

4!
φ4 − hφ

]}
=
∫
Dφ exp

{
−
∫

dDx [H[φ(~x)]− hφ(~x)]
}

(6.15)

Landau’s approximation is a saddle point approximation of the
integral. We find the specific field configuration φ0(~y) satisfying

δ

δφ(~y)

∫
dDx [H[φ(~x)]− h(~x)φ(~x)]

∣∣∣∣
φ0(~y)

= 0 (6.16)

that is,
−∇2φ0(~y) + r0φ0(~y) +

u0

3!
φ3

0(~y)− h(~y) = 0 . (6.17)

Now we approximate Z by exp
{
−
∫

dDx[H(φ0)− hφ0]
}

. The
Helmholtz free energy

F [h] = − log Z =
∫

dDx[H(φ0)− hφ0] . (6.18)

Note that the magnetization

m(~y) = − δF
δh(~y)

= φ0(~y) . (6.19)

The Legendre transform to the magnetic Gibbs free energy gives

Γ[m] = F [h]−
∫

dDy h(~y)m(~y)∫
dDy

[
1
2
(∇m)2 +

r0

2
m2 +

u0

4!
m4
]

. (6.20)

Differenting with respect to the magnetization at a point ~x,

δΓ
δm(x)

= −∇xm(~x) + r0m(~x) +
u0

3!
[m(~x)]3 = h(~x) (6.21)

where ∇x is the gradient operator at ~x.
The connected Green’s function can be obtained by differentiat-

ing twice

G(~x,~y) = 〈φ(~y)φ(~x)〉c

=
δ2

δh(~y)δh(~x)
log Z

= − δ

δh(~y)
δ

δh(~x)
F

=
δ

δh(~y)
m(~x) (6.22)

Differentiating (6.21) with respect to h(~y) gives[
−∇2

x + r0 +
u0

2
m2
]

G(~x,~y) = δ(~x−~y) . (6.23)
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We can solve this by Fourier transform. If we let h be uniform in
space, then translational invariance implies that G(x, y) = G(x− y).
Let

G(~x) =
∫ dDq

(2π)D G̃(~q)e−i~q·~x . (6.24)

Insert this into (6.23) to find

G̃(~q) =
1

q2 + r0 +
u0
2 m2 . (6.25)

If, near T ≈ Tc, we can write r0 = c(T − Tc) with constant c, (6.21)
implies c(T − Tc)m + u0

3! m3 = 0 and therefore

G̃(~q) =


1
q2

(
1 + 2c(Tc−T)

q2

)−1
for T < Tc

1
q2

(
1 + c(Tc−T)

q2

)−1
for T > Tc

. (6.26)

Note the 1/q2 divergence for q2 → 0 as T → Tc. This is a con-
sequence of long range, or small wavevector, correlations, as we
expect at a second order phase transition.

More generally one observes a 1/q2−η divergence, where η is the
correlation function critical exponent. That is, we can write

G̃(~q) =
1

q2−η
f̃ (qξ) (6.27)

for small q. f (qξ) is a dimensionless function of the dimensionless
product of q with the correlation length ξ, and f should be finite as
qξ → ∞. In the case of Landau-Ginzburg theory, we can infer that
η = 0 and ν = 1

2 from rearranging (6.26) into the form of (6.27).15 15 Recall ν is the critical exponent for
the correlation length: ξ ∼ (T − Tc)−ν.Generalizing an examples sheet problem, one can show that the

Fourier transform back to position space yields for low q (large r)

G(r) =
f (r/ξ)

ξD+η−2 =
g(r/ξ)

rD+η−2 . (6.28)

Typically one finds exponentially decaying G(r) for r � ξ; i.e.,
g ∼ e−r/ξ .





Renormalization in Fourier space

7.1 Gaussian model

We begin applying renormalization group (RG) methods to the
Landau-Ginzburg theory with no interactions: free scalar field
theory, also called in this context the Gaussian model. (We take φ to
be real.) It will be useful to introduce an external source h(~x) which
couples to φ(~x):

H0[φ, h] =
∫

dDx
[

1
2

α−1(∇φ)2 +
1
2

r0φ2 − h(~x)φ(~x)
]

(7.1)

usually taking the h → 0 limit to obtain results. Note that, we have
introduced a parameter in front of the kinetic term (∇φ)2.

Fourier transform

φ̃(~p) =
∫

dDx e−i~p·~x φ(~x) (7.2)

and similarly for h. Note that φ(~x) being real implies

φ̃∗(~p) = φ̃(−~p) . (7.3)

The transformed Hamiltonian is

H0[φ̃, h̃] =
1
2

∫ Λ dD p
(2π)D

[ (
α−1 p2 + r0

)
|φ̃(~p)|2

−
(
h̃(−~p)φ̃(~p) + h̃(~p)φ̃(−~p)

) ]
. (7.4)

Note we impose a momentum cutoff Λ. On a spatial lattice, each
momentum component pi < π/a. For simplicity, here we have done
the Fourier transform in the continuum and imposed a spherical
cutoff in momentum space.

The partition function is given by

Z0 =
∫
Dφ̃ e−H0[φ̃] . (7.5)

This is somewhat loose notation for what is essentially a functional
integral. Imagine working with discrete momentum space, due to
putting the system in a finite volume. Then the partition function
is the integral over all values of φ̃ at each discrete value of p. Then
take the infinite volume limit. (I hope to write an appendix on
functional integrals.) Note the exponential is diagonal in ~p; there is
no coupling between modes with different momenta.
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Denote

∆̃(~p) = α−1 p2 + r0 (7.6)

Complete the square

φ̃ ∆̃ φ̃∗ − (h̃∗φ̃ + h̃φ̃∗) =
[
φ̃− h̃∆̃−1

]
∆̃
[
φ̃∗ − h̃∗∆̃−1

]
− h̃∆̃−1h̃∗

≡ 2HG[φ̃] − h̃∆̃−1h̃∗ . (7.7)

with the last line defining HG.
Thus

Z0[h̃] = ZG exp
[

1
2

∫ dD p
(2π)D h̃∆̃−1h̃∗

]
(7.8)

where

ZG =
∫
Dφ exp

[∫ dD p
(2π)D HG[φ̃]

]
. (7.9)

The source term h in H provides an easy way to compute expec-
tation values

〈φ(y)〉 =
1

Z0

∫
Dφ φ(y) exp

{
−
∫

dDx
[

1
2α

(∇φ)2 +
1
2

r0φ2
]}

=
1

Z0

δZ0[h]
δh(y)

∣∣∣∣
h=0

=
δ

δh(y)
log Z0[h]

∣∣∣∣
h=0

(7.10)

Even more useful is the connected 2-point function

〈φ(x)φ(y)〉c = 〈φ(x)φ(y)〉 − 〈φ(x)〉〈φ(y)〉

=

[
1

Z0

δ2Z0[h]
δh(x) δh(y)

−
(

1
Z0

δZ0[h]
δh(x)

)(
1
Z

δZ0[h]
δh(y)

)]
h=0

=
δ2

δh(x) δh(y)
log Z0[h]

∣∣∣∣
h=0

. (7.11)

Fourier transform the connected 2-point function

〈φ̃(~q)φ̃(~p)〉c =
∫

dDx dDy e−i~q·~xe−i~p·~y 〈φ(x)φ(y)〉c

=
∫

dDx dDx′ e−i(~q+~p)·~xe−i~p·~x′ Go(~x′)

= (2π)Dδ(D)(~q + ~p) G̃0(~p) (7.12)

From (7.11) and (7.8) we also have

〈φ̃(~q)φ̃(~p)〉c = (2π)D δ2

δh̃(−~q) δh̃(−~p) log Z0[h̃]
∣∣∣∣
h̃=0

= (2π)Dδ(D)(~q + ~p) ∆̃−1(~p) (7.13)

This implies

G̃0(~p) = ∆̃−1(~p) =
α

p2 + αr0
. (7.14)

Thus we can transform back to position space

G0(~x) =
∫ dD p

(2π)D ei~p·~x α

p2 + αr0
. (7.15)
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Let us write ξ−2 = αr0 and consider limits where r = |~x| is much
larger and much smaller than ξ we find the asymptotic behaviour

G0(r) ∼


1

rD−2 r � ξ

ξe−r/ξ

(rξ)(D−1)/2
r � ξ .

(7.16)

To explore scaling behaviour, we will implement a 2-step RG
transformation: (1) Thinning/removing small wavelength degrees-
of-freedom and (2) Rescaling units. First, let us work with a con-
stant external source h(~x) = h, so that it only couples to the zero-
momentum mode. The source term in the Hamiltonian then be-
comes ∫

dDx h(~x)φ(~x) = h
∫

dDx φ(~x) = hφ̃(0) . (7.17)

(1) Thinning We divide the field φ into long and short wave-
length parts, respectively

φ̃(~p) = φ̃<(~p) + φ̃>(~p) (7.18)

with

φ̃<(~p) =

{
φ̃(~p) 0 ≤ p ≤ Λ/b

0 Λ/b < p ≤ Λ

φ̃>(~p) =

{
0 0 ≤ p ≤ Λ/b

φ̃(~p) Λ/b < p ≤ Λ
.

Because H does not couple different momentum modes (it is diago-
nal in ~p) we can separate the two functional integrals

Z0 =
∫
Dφ̃< e−H0[φ̃< ]

∫
Dφ̃> e−H0[φ̃> ] . (7.19)

The integrals over φ̃> are Gaussian, and just give an overall multi-
plicative factor

Z0 = e−F>
∫
Dφ̃< e−H0[φ̃< ] (7.20)

with

H0[φ̃<] =
∫ Λ/b dD p

(2π)D

[
1
2

(
α−1 p2 + r0

)
|φ<(~p)|2 + hφ̃<(0)

]
.

(2) Rescaling
Let us set h = 0 temporarily. We now rescale so that the momen-

tum cutoff is again Λ:

~p = ~p′/b

~x = b~x′

φ̃<(~p) = b−d̃φ φ̃′(~p′) . (7.21)

We write the thinned, rescaled Hamiltonian, in 2 ways

H′0 =
∫ dDp′

(2π)D b−D−2d̃φ−2
[

1
2

α−1 p′2 +
1
2

b2r0

]
|φ′(~p′)|2 (7.22)

=
∫ dDp′

(2π)D b−D−2d̃φ

[
1

2b2 α−1 p′2 +
1
2

r0

]
|φ′(~p′)|2 . (7.23)
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In position space we would rescale the field

φ<(~x) = b−dφ φ′(~x′) . (7.24)

The fact that φ< and φ̃< are Fourier transforms allows one to show
that d̃φ = dφ − D. The position space equivalents of (7.22) and (7.23)
are

H′0 =
∫

dDx′ bD−2dφ−2
[

1
2

α−1(∇′φ′)2 +
1
2

b2r0φ′2
]

(7.25)

=
∫

dDx′ bD−2dφ

[
1

2b2 α−1(∇′φ′)2 +
1
2

r0φ′2
]

. (7.26)

These 2 ways of writing H′0 make clear the 2 fixed points of the
renormalization group transformation we made, that is, the points
in coupling constant space where H′0 = H0. Near these 2 fixed
points, the field φ scales differently.

Looking at (7.26) we see that if the scaling dimension of the field
satisfies D − 2dφ = 0 then (α−1, r0) = (0, r0) is a fixed point, with
r′0 = r0 arbitrary and α′−1 = (b2α)−1. If the kinetic energy term
vanishes, then the fields on different lattice sites decouple and is
essentially an infinite temperature system. There is not much else
interesting about this case.

The more interesting case is evident when looking at (7.25). If
D − 2dφ − 2 = 0 then (α−1, r0) = (α−1, 0) is a fixed point where
r′0 = b2r0 and α′−1 = α−1 can be arbitrary. This is the Gaussian
fixed point.

Let us restore h 6= 0. In the rescaled Hamiltonian h′ = b
D
2 +1h.

Near the fixed point, the correlation length ξ = 1/m diverges.
Expand r0 about T = Tc and assume it vanishes linearly as r0 ∼ |t|.
Then under rescaling, we can determine the scaling exponents:

|t′| = b2|t| ⇒ yt = 2

h′ = b
D
2 +1h ⇒ yh =

D
2
+ 1 . (7.27)

from which we can read off the critical exponents (see Chapter 10)

α =
4− D

2
, β =

D− 2
4

, ν =
1
2

, γ = 1 . (7.28)

These are not the mean field exponents in general, but they do
coincide with the mean field predictions when D = 4.

7.2 Interacting model

Having used the Gaussian model for a noninteracting scalar field to
present the ideas of the renormalization group, we now turn to the
physically interesting case where interactions are present. We take
as the Hamiltonian

H =
∫

dDx
[

1
2

α−1(∇φ)2 +
1
2

r0φ2 +
u0

4!
φ4
]

. (7.29)

The interaction term φ4 couples different normal modes in Fourier
space. This means we cannot solve the system exactly as in the pure
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Gaussian model. One thing we can do is to treat the interaction
term as a small perturbation from the Gaussian model

H = H0 + V (7.30)

with H0 the Hamiltonian of the Gaussian model and V = u0
4!

∫
dDx φ4(~x).

As in the solution of the Gaussian model, we divide the field φ

into long and short wavelength parts

φ̃(~p) = φ̃<(~p) + φ̃>(~p) (7.31)

with

φ̃<(~p) =

{
φ̃(~p) 0 ≤ p ≤ Λ/b

0 Λ/b < p ≤ Λ
(7.32)

φ̃>(~p) =

{
0 0 ≤ p ≤ Λ/b

φ̃(~p) Λ/b < p ≤ Λ
. (7.33)

The thinned Hamiltonian H′1 is obtained as follows

Z =
∫
Dφ̃<Dφ̃> exp {−H0[φ̃<]− H0[φ̃>]−V[φ̃<, φ̃>]}

=
∫
Dφ̃< e−H0[φ̃< ]

∫
Dφ̃> exp {−H0[φ̃>]−V[φ̃<, φ̃>]}

≡
∫
Dφ̃< e−H′1[φ̃< ]

{∫
Dφ̃> e−H0[φ̃> ]

}
(7.34)

where the last line defines H′1. Therefore

e−H′1[φ̃< ] = e−H0[φ̃< ]

∫
Dφ̃> exp {−H0[φ̃>]−V[φ̃<, φ̃>]}∫

Dφ̃> e−H0[φ̃> ]
. (7.35)

Expanding about small V (i.e. small u0) we find

H′1[φ̃<] = H0[φ̃<] +

∫
Dφ̃> V[φ̃<, φ̃>] e−H0[φ̃> ]∫

Dφ̃> e−H0[φ̃> ]

= H0[φ̃<] + 〈V[φ̃<, φ̃>]〉shell
0 (7.36)

In the last term, the subscript means the integration is weighted
by the free Hamiltonian H0 and the superscript “shell” means that
the integration is performed only over the short wavelength modes,
those with momenta satisfying Λ/b < p ≤ Λ.

In order to evaluate (7.36) let us recall the definition of the free
propagator

〈φ(~x) φ(~y)〉0 = G0(r)

=
∫ Λ

0

dD p
(2π)D

α e−i~p·~x

p2 + αr0
. (7.37)

Let us define a similar propagator for short wavelength modes

〈φ>(~x) φ>(~y)〉shell
0 = G>

0 (r)

=
∫ Λ

Λ/b

dD p
(2π)D

α e−i~p·~x

p2 + αr0
. (7.38)
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Then we can write

〈V(φ̃<, φ̃>)〉shell
0 =

u0

4!

〈
(φ<(~x) + φ>(~x))

4
〉shell

0

=
u0

4!

[
φ4
< + 6φ2

< 〈φ>(~x) φ>(~x)〉shell
0 + 〈φ4

>〉shell
0

]
.

(7.39)

The last term is just a constant and can be dropped. Also note the
appearance of G>

0 (0) in the penultimate term. Therefore we find

H′1 =
∫

dDx
[

1
2

α−1(∇φ<)
2 +

1
2

r0φ2
< +

u0

4!
φ4
< +

u0

4
φ2
<G>

0 (0)
]

.

(7.40)
We now rescale so that the momentum cutoff is again Λ:

~x ′ = ~x/b

φ′(~x ′) = bdφ φ<(~x) . (7.41)

The rescaled Hamiltonian is

H′ =
∫

dDx′ bD−2dφ−2
[

1
2

α−1(∇′φ′)2 +
1
2

b2
(

r0 +
u0

2
G>

0 (0)
)

φ′2

+ b2−2dφ
u0

4!
φ′4
]

. (7.42)

As we did in the free case, we consider the physically interesting
case D − 2dφ − 2 = 0, i.e. we rescale the fields using dφ = D

2 − 1.
Now the fixed point is

r′0 = b2
(

r0 +
u0

2
G>

0 (0)
)

(7.43)

u′0 = b4−D u0 = bε u0 (7.44)

where ε ≡ 4− D. The point (r0, u0) = (0, 0) is still a fixed point and
is still called the Gaussian fixed point. Evaluating G>

0 (0) near this
point we find

G>
0 (0) =

∫ Λ

Λ/b

dD p
(2π)D

1
p2 + r0

=
SD−1

(2π)D

∫ Λ

Λ/b

pD−1 dp
p2 + O (r0)

=
SD−1

(2π)D
ΛD−2

D− 2
(1− b2−D) + O (r0)

≡ 2B(1− b2−D) + O (r0) (7.45)

where SD−1 is the area of a (D − 1)-sphere.16 The last line de- 16 An earlier version of the notes used
an incorrect label for the dimensional-
ity of the sphere. A circle is a 1-sphere,
etc.

fines B. The linearised RG flow near the fixed point can then be
expressed by the matrix equation(

r0

u0

)′
=

(
b2 Bb2(1− b2−D)

0 bε

)(
r0

u0

)
(7.46)

The 2× 2 matrix on the righthand side of (7.46) is an example of
Kij(u∗) = ∂Ri/∂uj|u∗ of Chapter 10, eqn. (72). Note that dropping
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m
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u
G
*

ê
1

ê
2

Figure 7.1: RG flow for D > 4. Axes
labels need to be updated m2 7→ r0 and
g 7→ u0.

the O (r0) terms from G>(0) is equivalent to linearised the RG
equations near the Gaussian fixed point. The eigenvalues λ and
eigenvectors ~e are

λ1 = b2, y1 =
log λ1

log b
= 2, ~̂e(1) =

(
1
0

)
(7.47)

λ2 = bε, y2 =
log λ2

log b
= ε, ~̂e(2) =

(
−B
1

)
(7.48)

The exponents of the eigenvectors, y are the critical exponents. The
RG flow clearly depends on the sign of ε, i.e. whether the system in
is more or fewer than 4 dimensions.

For D > 4 we have 1 relevant direction, ~e1, and 1 irrelevant di-
rection, ~e2. A general point in the 2-dimensional coupling constant
space (but near the critical point) can be written as

~u = r0r̂0 + u0 û0

= r0~e1 + u0(B~̂e1 +~e2)

= (r0 + Bu0)~e1 + u0~e2 (7.49)

The critical surface, the set of points which flow into the fixed
point, must satisfy r0 + Bu0 = 0, otherwise the flow will be carried
away from the fixed point in the ~e1−direction. Figure 7.1 shows the
Gaussian fixed point uG

∗, and the critical surface for the φ4 model
in D > 4 dimensions.

Since the long wavelength physics is governed by the Gaussian
fixed point for D > 4, we can expect the critical exponents to be
given by mean field theory. Actually one needs care with α, β, and
δ due to dangerous irrelevant variables. We do not discuss this
here, and refer to §VII.4 of S-K Ma’s 1976 text.

Let us now turn to the case where D < 4. Then both y1 > 0 and
y2 > 0, so the Gaussian fixed point is infrared repulsive and does
not govern the long wavelength physics. The critical exponents are
thus not given by mean field theory.
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Figure 7.2: RG flow for D < 4. Axes
labels need to be updated m2 7→ r0 and
g 7→ u0.

All is not lost, however. Using a perturbative expansion in g to
go beyond linear order, (7.44) is modified to give

u′0 = bεu0(1− Cu0 log b) (7.50)

where C is a constant. One of the 2 conditions for a fixed point, that
u′0 = u0, can be written conveniently as

0 =
∂u′0

∂ log b

∣∣∣∣
b=1

= εu0 − Cu2
0 (7.51)

which is satisfied by u0 = 0 and u0 = ε/C. So, in addition to
the Gaussian fixed point u∗G = (0, 0), we find another fixed point
u∗WF = (0, ε/C), called the Wilson-Fisher fixed point. We display
the D < 4 situation in Figure 7.2. It turns out this is the fixed point
which will control the long wavelength behaviour of the system.
When D > 4, this fixed point was in the unphysical u0 < 0 half-
plane.

If ε is small, in some sense which is usually left vague, then u∗WF

is near enough to u∗G that we can calculate small departures from
mean field exponents using perturbation theory in what is called
an ε−expansion.17 For example, we will find that the correlation 17 See also the classic papers: Wilson

& Kogut, Phys. Rep. 12, 75 (1974) and
Wilson’s Nobel lecture in Rev. Mod.
Phys. 55, 583 (1983).

length critical exponent is

ν =
1
2

+
ε

12
+ O

(
ε2
)

. (7.52)
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