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Examples Sheet 1

1. Consider a modification of the Ising model where the spin degrees-of-freedom take
the values σn = 1, 0,−1. One might refer to this as the spin-1 Ising model, and to
the σn = ±1 case as the spin-1

2
Ising model (with a factor 1

2
absorbed somewhere).

Here we solve the D = 1 spin-1 Ising model. Start by showing that the partition
function is

Z = TrWN

where W is the 3× 3 matrix

W =

zµ2 µ z−1

µ 1 µ−1

z−1 µ−1 zµ−2


with the shorthand z = eβJ and µ = eβh/2. For the case h = 0 show that this matrix
can be expressed in the form W = PΛP−1 where

Λ =

2 cosh βJ
√

2 0√
2 1 0

0 0 2 sinh βJ

 and P =

1/
√

2 0 −1/
√

2
0 1 0

1/
√

2 0 1/
√

2

 .

Hence find the eigenvalues of W and show that in the thermodynamic limit the free
energy of the system is

F = −NT log

{
1

2

[
1 + 2 cosh βJ +

√
(2 cosh βJ − 1)2 + 8

]}
.

2. By considering 〈σ0〉 in equilibrium show that in the mean field approximation to the
Ising model in D-dimensions the equilibrium magnetization is given by the solution
to

m = tanh β(qJm+ h)

where q = 2D. The free energy in this approach is

A = −T log[2 cosh β(qJm+ h)] +
1

2
qJm2 .

Show that the expression for the equilibrium magnetization above can also be ob-
tained by minimizingA with respect tom. Below we use F to denote the equilibrium
free energy.

The critical exponent α governs the divergence in the specific heat as T → Tc

C ∼ |T − Tc|−α where C = T
∂2F
∂T 2

∣∣∣∣
h=0

.
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Using the expression for m above, show that the h = 0 free energy in equilibrium is

F = −T log 2 +
1

2
T log(1−m2) +

1

2
qJm2 .

By assuming the expansion m2 = c1t+ c2t
2 + . . . where t ≡ (T −Tc)/Tc, derive that

F = −T log 2 +
1

2
T log(1− c1t− c2t

2) +
1

2
qJ(c1t+ c2t

2) .

By expanding F in t show that

F = a0 + a1t+
1

2
a2t

2

for some constants ai, and consequently that

C =
a2

Tc
+O(t)

and hence that the exponent α = 0.

3. In the Blume-Capel model in D-dimensions the spins σn take values σn = 1, 0,−1.
The Hamiltonian is an extension of the Ising-like one discussed on the previous sheet

H = −J
∑
〈ij〉

σiσj + g
∑
i

σ2
i − h

∑
i

σi

where the first sum is over all nearest-neighbour pairs and the other sums are over
all sites. Say each site has q nearest neighbours. Use the mean field approach to
show that the free energy density of this system is approximated by

A =
1

2
Jqm2 − T log[1 + 2κ cosh β(Jqm+ h)]

where κ = e−βg and m is the magnetization. [Hint: do not approximate the g
∑

i σ
2
i

term.]

For h = 0 expand A as a power series in m. For what values of (T, κ) does mean
field theory predict (i) ordinary critical behaviour, (ii) tricritical behaviour, (iii) a
first order transition? In each case find the value of the critical temperature Tc(κ).

Calculate the critical exponent α for both critical and tricritical behaviours.

4. The q-state Potts model is a generalisation of the Ising model. At each lattice site
lives a variable σi ∈ {1, 2, . . . , q}. The Hamiltonian is given by the sum over nearest
neighbours

HPotts = −3J

2

∑
〈ij〉

δσi σj

How many ground states does the system at at T = 0?

Show that the 3-state Potts model is equivalent to the Hamiltonian

H = −J
∑
〈ij〉

~si · ~sj
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where ~si take values in the set

~si ∈
{(

1
0

)
,

(
−1/2√

3/2

)
,

(
−1/2

−
√

3/2

)}
By developing a mean field theory for H determine the self-consistency requirement
for the magnetisation ~m = 〈~si〉. Compute the mean field free energy and show
that the system undergoes a first order phase transition even in the absence of an
external field.

[Hint: This calculation will be simpler if you argue that you can focus on magneti-
sation vectors of the form ~m = (m, 0).]

5. The free energy A of an Ising system with variable order parameter m is given by

A = −hm+A2m
2 +A4m

4 +A6m
6 ,

where it is assumed that A6 > 0 and that A2 and A4 are functions of external fields
T and g, with A2 ∼ T − Tc(g) and where h is the applied magnetic field.

On dimensional grounds argue that at equilibrium F may be expressed as

F =
|A2|3/2

A1/2
6

Φ

(
A4

2
√
|A2|A6

,
hA1/4

6

|A2|5/4

)
,

where Φ(0, 0) is finite and nonzero.

Compare this expression with the generic form for the free energy near the tricritical
point, namely

A = |T − Tc(g̃)|2−α Φ

(
g̃

|T − Tc(g̃)|φ
,

h

|T − Tc(g̃)|∆

)
where g̃ ∝ A4 and g̃ has been substituted for g as one of the independent external
fields. Deduce that

α =
1

2
, φ =

1

2
, ∆ =

5

4
.

Define the critical temperature at the tricritical point to be TTCP ≡ Tc(g̃ = 0).

(a) For h = 0 consider the trajectory in (T, g̃) space defined by the limit g̃ → 0
and T → TTCP keeping the following ratio fixed

x ≡ g̃

|T − Tc(g̃)|φ
.

Observe that A ∼ |T − TTCP |3/2, and therefore α = 1
2
. The trajectory lies

in the tricritical region, i.e., we see tricritical exponents as we approach the
transition. φ is known as the crossover exponent since it controls the shape of
the trajectory and hence defines the boundary of the tricritical region.
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(b) For h = 0, g̃ fixed, and T → Tc show that α = 0, (i.e. normal critical behaviour)
as long as it can be assumed that the function G defined by

y G(y, 0) = Φ

(
1

y
, 0

)
is finite and nonzero at y = 0.

The crucial point is that to use dimensional analysis the existence of scaling functions
such as Φ and G must be assumed and that these functions are finite and nonzero
when their arguments are set to zero.
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