Examples Sheet 2

1. If you have not already done so, fill in the steps of the lecture notes to show that the RG equations corresponding to our decimation transformation for the $D=1$ Ising model are

$$
\begin{aligned}
x^{\prime} & =\frac{x(1+y)^{2}}{(x+y)(1+x y)} \\
y^{\prime} & =\frac{y(x+y)}{1+x y} \\
w^{\prime} & =\frac{w^{2} x y^{2}}{(1+y)^{2}(x+y)(1+x y)}
\end{aligned}
$$

where $x=e^{-4 \beta J}, y=e^{-2 \beta h}$, and $w=e^{4 \beta K}$. From linearizing near the fixed point at $(x, y)=(0,1)$, we found eigenvalues of the linearized RG transformation and the associated critical exponents. Use these to deduce that the singular part of the free energy per spin satisfies

$$
f(x, \rho)=b^{-1} f\left(b^{2} x, b \rho\right),
$$

for a scale change $b=2$ and where $y=1-\rho$. Use this result to show that

$$
f(x, \rho)=\sqrt{x} \tilde{f}(\rho / \sqrt{x}),
$$

where $\tilde{f}(z)=f(1, z)$. Verify that this is consistent with the exact result for the free energy if we choose

$$
\tilde{f}(z)=-T \sqrt{1+\frac{z^{2}}{4}}
$$

for the singular part.
2. Continuing with the $D=1$ Ising model, compare the complete expression for the free energy \mathcal{F}, derived in the notes, with its scaling form. What plays the role of the inhomogeneous part?
For fixed J and $h=0$ find an expression as $T \rightarrow 0$ for the leading singularity in the analogue of the specific heat $C=\partial^{2} \mathcal{F} / \partial t^{2}$, where $t=x$. Comment on what this implies for the value of α and the validity of the scaling relation $\alpha+2 \beta+\gamma=2$.
Suppose now $T>0$ and held constant with $h=0$. Let $J \rightarrow \infty$. What is the value of α in this case?
3. Consider a one-dimensional lattice of N sites. On each site is a degree-of-freedom $\sigma_{i}(i=1,2, \ldots, N)$ which can take any of q integer values, say $\sigma_{i}=0,1, \ldots, q-1$. Impose periodic boundary conditions so that $\sigma_{i+N}=\sigma_{i}$. Let the Hamiltonian be

$$
H(J)=-J \sum_{i} \delta_{\sigma_{i} \sigma_{i+1}}
$$

with $J>0$ and $\delta_{\alpha \beta}$ the Kronecker δ-function. This is the q-state Potts model.
Carry out a decimation type of renormalization group transformation. That is, consider

$$
\exp [-H(J)-N K]
$$

where K is independent of the degrees-of-freedom $\left\{\sigma_{i}\right\}$. Sum over the σ_{i} on every other site to obtain exact recursion relations for J and K. You may find it convenient to define $x=e^{J}$ and $w=e^{K}$ and use these to write the recursion relations.

Show that $J=0$ and $J=\infty$ are fixed points of the renormalization group transformation and find whether each is stable or unstable.
4. (Binney et al., 5.2) Consider the $D=2$ Ising model on a square lattice with lattice spacing a, and with nearest-neighbour (i.e. distance a apart) and next-to-nearestneighbour (i.e. distance $a \sqrt{2}$ apart) interactions, respectively corresponding to the first and second terms in the Hamiltonian

$$
H=-K \sum_{\langle i j\rangle} \sigma_{i} \sigma_{j}-L \sum_{\langle\langle k \ell\rangle\rangle} \sigma_{k} \sigma_{\ell} .
$$

Perform a thinning of degrees-of-freedom by summing over the spins, "decimating" the spins, on every second site, in a "checker-board" fashion - say, decimate spins with (x, y) coordinates $(2 m, 2 n+1)$ and $(2 m+1,2 n)$, with m and n integers. Rescale the lattice by a factor $b=\sqrt{2}$ to recover the original lattice spacing. Calculate the interactions on the blocked lattice keeping only terms up to $O\left(K^{2}\right)$ and $O(L)$. Show that there are only 2 such interactions to this order, and that they are the same operators as the original ones, with new couplings

$$
\begin{aligned}
K^{\prime} & =2 K^{2}+L \\
L^{\prime} & =K^{2} .
\end{aligned}
$$

Find the critical points for these RG equations and identify the nontrivial fixed point. Linearizing about this point, find a value for the critical exponent ν.
Sketch the RG flows in the $K-L$ plane, assuming positive K and L.

