Examples Sheet 3

1. Consider the Landau-Ginzburg Hamiltonian on a lattice with N sites.

$$
H\left(\left\{\phi_{i}\right\}\right)=a^{D} \sum_{i=1}^{N}\left[\frac{1}{2} \sum_{\mu=1}^{D}\left(\Delta_{\mu} \phi_{i}\right)^{2}+\frac{1}{2} r_{0} \phi_{i}^{2}+\frac{u_{0}}{4!} \phi_{i}^{4}\right]
$$

The forward difference operator Δ_{μ} is defined to be such that

$$
\Delta_{\mu} \phi_{i} \equiv \frac{1}{a}\left[\phi\left(\mathbf{x}_{i}+a \hat{\mu}\right)-\phi\left(\mathbf{x}_{i}\right)\right]
$$

Make the Landau approximation that the thermodynamics can be described by the saddle-point approximation to the partition function.
Consider the broken phase, where $m=\left\langle\phi_{0}\right\rangle \neq 0$. First introduce a external, constant magnetic field h and discuss the relative importance of the field configuration $-\phi_{0}$ as $h \rightarrow 0$ and $N \rightarrow \infty$. Does the order in which these limits are taken matter? Why, or why not?
2. (Adapted from Le Bellac 2.5)
(a) Consider real scalar field ϕ on a (hyper)cubic lattice in D dimensions with unit lattice spacing ($a=1$) and Hamiltonian

$$
H=-J \sum_{\langle i j\rangle} \phi_{i} \phi_{j}
$$

where $\langle i j\rangle$ denotes nearest neighbours. Let the probability for a particular configuration of field variables $\left[\phi_{i}\right]$ be

$$
P\left[\phi_{i}\right]=\frac{1}{Z} \exp \left[-\beta H-\frac{1}{2} r_{0} \sum_{i} \phi_{i}^{2}\right] .
$$

By going to Fourier space and introducing an external magentic field as a source, show that the position-space, connected correlation function $\left\langle\phi_{j} \phi_{k}\right\rangle_{c}$ is given by

$$
\left\langle\phi_{j} \phi_{k}\right\rangle_{c}=\int \frac{d^{D} q}{(2 \pi)^{D}} \frac{e^{i \mathbf{q} \cdot\left(\mathbf{x}_{j}-\mathbf{x}_{k}\right)}}{r_{0}-2 \beta J \sum_{\mu=1}^{D} \cos q_{\mu}}
$$

where $q_{\mu} \in(-\pi, \pi]$ is the μ-component of \mathbf{q}.
(b) Now take as the Hamiltonian (restoring the explicit lattice spacing a)

$$
H=a^{D} \sum_{i=1}^{N}\left[\frac{1}{2} \sum_{\mu=1}^{D}\left(\Delta_{\mu} \phi_{i}\right)^{2}+\frac{1}{2} m^{2} \phi_{i}^{2}\right]
$$

where $i \in[1, N]$ labels the sites. Show or argue that the correlation function in momentum space is given by

$$
\tilde{G}(\mathbf{q})=\left[\frac{2}{a^{2}} \sum_{\mu=1}^{D}\left(1-\cos \left(a q_{\mu}\right)\right)+m^{2}\right]^{-1} .
$$

[You need not repeat all the steps that are in your solution to (a).] Show that if $a q_{\mu} \ll 1$ (for all μ) the correlation function is nearly rotationally invariant. For small $a q_{\mu}$, what is the largest term which breaks rotational invariance?
3. In the Gaussian model, let us write the Hamiltonian as

$$
H[\phi]=\int d^{D} x\left[\frac{1}{2}(\nabla \phi)^{2}+\frac{1}{2} r_{0} \phi^{2}\right] .
$$

The momentum-space 2-point correlation function is

$$
\tilde{G}_{0}(p)=\frac{1}{p^{2}+r_{0}} .
$$

We wish to show that

$$
G_{0}(x)=\int \frac{d^{D} p}{(2 \pi)^{D}} e^{-i p \cdot x} \frac{1}{p^{2}+r_{0}} \sim\left\{\begin{array}{cl}
\frac{1}{r^{D-2}} & r \ll \xi \\
\frac{\xi e^{-r / \xi}}{(r \xi)^{(D-1) / 2}} & r \gg \xi
\end{array}\right.
$$

where $r=|x|$. The $r \ll \xi$ limit may be obtained straightfowardly by making a sensible approximation for this limit. The $r \gg \xi$ limit requires more work. The most elegant solution makes use of the identity that, for $u>0$,

$$
u=\int_{0}^{\infty} d t e^{-t / u}
$$

Then another, more common trick can be employed to carry out the momentum integral. One last approximation yields the desired form.
Another approach is to pick out one of the D dimensions. Let $x=(s, \mathbf{x})$, where \mathbf{x} is a $D-1$ dimensional vector. Then show that

$$
\int d^{D-1} x G_{0}(s, \mathbf{x}) \propto \xi e^{-|s| / \xi}
$$

and proceed from there, making a suitable approximation for the $r \gg \xi$ limit.
4. (Le Bellac 3.3) Consider the Landau-Ginzburg Hamiltonian with additional interaction terms:

$$
H=\int d^{D} x\left[\frac{1}{2 \alpha}(\nabla \phi)^{2}+\frac{1}{2} r_{0} \phi^{2}+\frac{u_{0}}{4!} \phi^{4}+\frac{u_{6}}{6!} \phi^{6}+\frac{u_{8}}{8!} \phi^{8}+\frac{v_{0}}{4!} \phi^{2}(\nabla \phi)^{2}\right] .
$$

For a renormalization group transformation where short wavelength modes are integrated out, derive renormalization group equations to first order in $V=H-H_{0}$, where H_{0} is the Hamiltonian of the Gaussian model. For $D>4$, verify that all the interaction terms in the Hamiltonian are irrelevant. Also calculate the modification to the term with $(\nabla \phi)^{2}$.
5. (Le Bellac 3.9) The generalization from a single scalar field to an n-component scalar field is straightforward; the interacting Hamiltonian can be written

$$
H_{1}=\int d^{D} x\left[\frac{1}{2} \sum_{j=1}^{n}\left(\nabla \phi_{j}\right)^{2}+\frac{1}{2} r_{0} \sum_{j=1}^{n} \phi_{j}^{2}+\frac{u_{0}}{4!}\left(\sum_{j=1}^{n} \phi_{j}^{2}\right)^{2}\right] .
$$

Let us add another term to H_{1}, arriving at a new Hamiltonian

$$
H_{2}=H_{1}+\frac{v_{0}}{4!} \int d^{D} x \sum_{j=1}^{n} \phi_{j}^{4}
$$

Show that H_{2} is positive definite only if both the following conditions are satisfied

$$
u_{0}+v_{0}>0 \text { and } u_{0}+\frac{v_{0}}{n}>0
$$

Show that the set of parameters $\left(u_{0}, v_{0}\right)$ is equivalent to the set $\left(u_{0}+\frac{3}{2} v_{0},-v_{0}\right)$ for the case that $n=2$.
For general n, and defining $u=u_{0} / 8 \pi^{2}$ and $v=v_{0} / 8 \pi^{2}$, one can derive the following differential renormalization equations (you can take them as given):

$$
\begin{aligned}
\frac{d u}{d \log b} & =\epsilon u-\frac{n+8}{6} u^{2}-u v \\
\frac{d v}{d \log b} & =\epsilon v-2 u v-\frac{3}{2} v^{2}
\end{aligned}
$$

where $\epsilon=4-D$. Show that these equations imply the existence of four fixed points. [These are termed the Ising, Heisenberg, Gaussian, and cubic fixed points. See if you can decide which is which, giving reasons.] For $\epsilon>0$ study the stability of these fixed points in the (u, v) plane and sketch the renormalization group flow in this plane. Show that one must distinguish between the cases $n<4$ and $n>4$.

