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Figure 11: A light-bulb is hot and radiates energetic photons which have a visible
wavelength. Humans are not so hot, so they emit less energetic photons with infrared
wavelength.

8 Bose-Einstein distribution

8.1 Black-body radiation

Any body at a temperature greater than zero radiates electromagnetic waves (see
Fig. 11), the quanta of which we call photons. Recall the energy of an electromag-
netic wave is inversely proportional to its wavelength

ε =
hc

λ
. (8.1.1)

Consider a box with perfectly reflecting walls which contains radiation (photons).
The photons may have differing values of energy.

Into this box we put a so-called black body (Fig. 12). “Black” here means that
the body absorbs any photon which hits it, reflecting no photons. But because the
temperature of the body is greater than zero, it also emits photons. The constant
absorption and emission of photons by the black body leads to thermal equilibrium
between the photon and the body.

Photons have spin 1, and so they are bosons. The distribution of photon occu-
pation number n̄(ε) will be a Bose-Einstein distribution with temperature T . Since
photon number is not conserved, the constraint

∑
ε n̄(ε) = N does not hold. Con-

sequently no Lagrange multiplier is needed in our derivation of the statistical dis-
tribution function in the grand canonical ensemble (6.1.6), so γ = 0 = µ. Radiation
characterised only by a temperature T is called black-body radiation.

We previously derived the density of states for an ideal gas of photons (4.1.15).
(We can safely neglect any interactions between photons.) From the Bose-Einstein
distribution (7.2.18) and (7.2.19), with µ = 0, we obtain the Planck distribution

n̄(ω) =
V ω2

π2c3
1

eβ~ω − 1
. (8.1.2)
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Figure 12: A black body inside an insulated box is in thermal equilibrium with the
radiation in the box. We can deduce the temperature of the body by measuring the
energy flux some distance away.

Thus,

ε̄(ω) = ~ωn̄(ω) =
V ~ω3

π2c3
1

eβ~ω − 1
. (8.1.3)

The classical limit is the high T or low ω limit, where

eβ~ω − 1 ' β~ω (8.1.4)

and

ε̄(ω) ∝ g(ω)kT recovering classical equipartition

∝ ω2 . (8.1.5)

This classical result is the Rayleigh-Jeans Law, and the fact that it diverges as
ω grows was called the ultraviolet catastrophe. Why a catastrophe? Because
then the total energy inside the box with a black body at temperature T , E(T ) =∫∞
0
ε̄(ω)dω is infinite.
Data agreed with the Rayleigh-Jeans Law at low frequencies only, but then satu-

rated and decreased. Only by positing that light was made of individual constituents
which could be treated using Boltzmann’s statistical mechanics did Planck reproduce
the experimental results. The 2 energy spectra are compared in Figure 13. At the
time this particle picture of light was widely viewed as a mathematical convenience,
with no physical significance.

Using the Planck distribution, one finds a sensible result for the energy

E(T ) =
V

(~c)3π2

∫ ∞

0

(~ω)3 d(~ω)

eβ~ω − 1
. (8.1.6)

Substituting x = β~ω

E(T ) =
V (kT )4

(~c)3π2

∫ ∞

0

x3 dx

ex − 1
. (8.1.7)
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Figure 13: Energy density distribution in dimensionless units E ′/V = π2(~c)3β4E/V
as a function of x = β~ω.

The integral is not one you should be expected to memorise. It happens to be equal
to the product of the Γ function and the Riemann zeta function evaluated at n = 4,
Γ(4)ζ(4) = π4/15. See Pathria, appendix D for details.7 The final result

E(T ) = 4V
σ

c
T 4 , σ ≡ π2kc

60

(
k

~c

)3

(8.1.9)

where σ is Stefan’s constant (equal to 5.67×10−8 J s−1m−2K−4, for what it’s worth).
What is usually measured in experiment or observation is not the total energy,

but an energy flux, E . Imagine a tiny aperture in the box which contains the black
body. The rate energy leaves the box, per unit area of the hole, is the energy flux.
(Assume there is no inward flux.) The speed of the photons is c. The number of
photons with angular frequency in (ω, dω) is n̄(ω) dω. The number of photons per
unit area passing through the hole per unit time which have frequency in (ω, dω) is

df(ω) =
c

4V
n̄(ω) dω . (8.1.10)

7The class of integrals appearing in calculations with bosons look like

gn(z) =
1

Γ(n)

∫ ∞

0

xn−1dx

z−1ex − 1
(8.1.8)

with x = βε and z = eβµ. gn(1) = ζ(n) for n > 1.
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It is clear that this number should scale like the speed the photons travel. The faster
particles go, the more should be emitted per unit time. The factor of 1/V is also
clear since it is the particle number density which controls how many particle are
near the aperture. The derivation of the factor of 1/4, due to the angular integration
over velocity directions, is a bit tedious, so we simply refer to Landau & Lifshitz,
§63. Since the energy of a photon with frequency ω is ~ω, the energy flux is

E =

∫
df(ω) ~ω =

c

4V

∫ ∞

0

dω ~ω n̄(ω) =
c

4V
E = σT 4 (8.1.11)

This result is called the Stefan-Boltzmann Law.
We can also calculate the entropy of the black body. Since µ = 0

S = k logZ +
E

T
. (8.1.12)

In the first term, we have

logZ = −
∫ ∞

0

dε g(ε) log
(
1 − e−βε

)

= −
∫ ∞

0

dω
ω2V

π2c3
log

(
1 − e−β~ω)

=
β

3

V

~3π2c3

∫ ∞

0

(~ω)3d(~ω)

eβ~ω − 1

=
β

3
E . (8.1.13)

Integration by parts was used to go from the second to third steps. The entropy is

S =
E

3T
+

E

T
=

4E

3T
=

16V σ

3c
T 3 . (8.1.14)

We can look at the expressions for E (8.1.9) and S (8.1.14) as functions of T ,
solve for T and equate them, obtaining

(
E

4V

c

σ

)
=

(
3S

16V

c

σ

)4/3

(8.1.15)

or

E = 4

(
3S

16

)4/3 ( c

V σ

)1/3

. (8.1.16)

The free energy is

F = E − TS = − E

3
. (8.1.17)

Since extensivity requires F (V, T,N) = −PV + µN in general, and since µ = 0 in
this case, we can find the radiation pressure to be

P =
E

3V
=

4σ

3c
T 4 . (8.1.18)

A similar calculation to those we have performed shows the number density of
photons is

N

V
∝ T 3 . (8.1.19)
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Figure 14: Schematic picture of a solid as atoms joined at lattice points by springs.
Vibrations propagate through the lattice as waves of quasiparticles called phonons.

8.2 Debye model of vibrations in solids

We now discuss an example which is quite different from others in the course, the
Debye model of vibrations in solids. Consider a crystal of atoms which make
up a solid (Fig 14). The atoms themselves are not a gas of non-interacting, or
even weakly interacting, particles as we have discussed before. However, we can de-
scribe the waves of vibrations in solids, i.e. sound waves, using the same statistical
physics, introducing the notion of quasiparticle.

As a preliminary step, consider a system of harmonic oscillators. The single
oscillator partition function for a harmonic oscillator of frequency ω is the sum of
Boltzmann factors over all excitation numbers n

z(ω) =
∑

n

exp(−β(n+ 1
2
)~ω) =

e−β~ω/2

1 − e−β~ω . (8.2.1)

The last step summed the geometric series.
The average single oscillator energy is

ε̄(ω) = − ∂

∂β
log z

=
~ω

eβ~ω − 1
+

1

2
~ω (8.2.2)

=

(
n̄+

1

2

)
~ω (8.2.3)

where the last step identifies the average excitation number

n̄(ω) =
1

eβ~ω − 1
(8.2.4)
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which is equivalent to the Planck distribution. We see that each excitation of this
harmonic oscillator is equivalent to an abstract bosonic particle, or quasiparticle.
(In quantum field theory, even real particles are described as harmonic excitations.)

[We can further point out the classical limit (~ω ¿ kT ) of (8.2.2),

ε̄ = small + ~ω
(

exp

(
~ω
kT

)
− 1

)−1

≈ kT = 2(1
2
kT ) (8.2.5)

satisfies the classical equipartition theorem for a body with 2 degrees-of-freedom.
The classical Hamiltonian for a harmonic oscillator is

H =
p2

2m
+

1

2
mω2x2 (8.2.6)

with p and x independent degrees-of-freedom.]
Returning to our solid, we treat waves of lattice vibrations as plane waves

ψk(x) =
1√
V
eik·x k =

2π

L
n n ∈ Z3 (8.2.7)

which have a dispersion relation

ε = ~ω = ~|k|cs . (8.2.8)

We denote the speed of sound by cs, and implicitly we have assumed cs is the same
in all directions.

The similarity between sound waves and light led people to call these bosonic
quasiparticles, phonons. While obeying a massless dispersion relation, as quasi-
particles in a crystal they are not required by Lorentz symmetry to have vanishing
longitudinal polarisation. Therefore gs = 3 for phonons, in contrast to gs = 2 for
photons. The density of states for phonons is

g(ω) =
3V ω2

2π2c3s
. (8.2.9)

If we have N atoms in the solid, with each atom free to vibrate in each of
the 3 dimensions, then there are 3N degrees-of-freedom. When we switch to the
phonon description of the vibrations, we still cannot exceed this number of degrees-
of-freedom. Said another way, a string of M atoms with length L must oscillate
with a minimum wavelength λmin. The distance between nodes of oscillation must
be greater than the distance between atoms L/M . Therefore λmin = 2L/M . Fig. 15
gives a rough illustration.

A minimum wavelength implies a maximum frequency ωmax. The constraint on
the maximum oscillator degrees-of-freedom gives us a way to calculate ωmax:

∫ ωmax

0

dω g(ω) = 3N (8.2.10)

which implies

ωmax =

(
6π2N

V

)1/3

cs . (8.2.11)
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Figure 15: 7 atoms in a row vibrating with 2 nodes and 4 nodes. The important
point is that the minimum separation between nodes is equal to the distance between
neighbouring atoms.

The total energy is then

E =

∫ ωmax

0

dω
~ω g(ω)

eβ~ω − 1
(8.2.12)

relative to the zero-point energy 3N~ω/2, which is unobservable and can be sub-
tracted.

Define the Debye temperature in relation to ωmax

TD =
~ωmax

k
(8.2.13)

and let x = ~ω/(kT ) so that xmax = TD/T . Then

E =
3V

2π2(~cs)3
(kT )4

∫ TD/T

0

x3 dx

ex − 1
. (8.2.14)

If we define the Debye function as

D(z) =
3

z3

∫ z

0

x3 dx

ex − 1
(8.2.15)

and substitute for (8.2.11) then we find

E = 3NkT D
(

TD

T

)
. (8.2.16)

We can consider 2 extremes. First, if T À TD, then z ¿ 1 and we Taylor expand
D(z) about z = 0 as

D(z) = 1 − 3z

8
+ O (

z2
)
. (8.2.17)
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(For small z the denominator in (8.2.15) can be approximated as x+ x2

2
+ . . ..) We

then obtain the classical result
E = 3NkT (8.2.18)

and consequently

CV =
∂E

∂T

∣∣∣∣
V

= 3Nk . (8.2.19)

There is no ultraviolet catastrophe since there is a finite ωmax. Note we recover
the classical equipartion theorem for a system with 6N degrees-of-freedom, i.e. 3N
classical harmonic oscillators.

In the other extreme, T ¿ TD (z À 1) and the upper limit of integration goes
to infinity:

D(z) =
3

z3

∫ ∞

0

x3 dx

ex − 1
=

π4

5z3
. (8.2.20)

We find

E =
3π4

5
(NkT )

(
T

TD

)3

(8.2.21)

and consequently

CV =
12π4

5
Nk

(
T

TD

)3

. (8.2.22)

8.3 Bose-Einstein condensation

We consider a nonrelativistic gas of bosons in 3 dimensions. There the density of
states is

g(ε) = KV
√
ε where K =

gs

4π2

(
2m

~2

)3/2

. (8.3.1)

Then the total particle number is given by

N =

∫ ∞

0

g(ε) dε

eβ(ε−µ) − 1

= KV

∫ ∞

0

√
ε dε

eβ(ε−µ) − 1

=
KV

β3/2

∫ ∞

0

√
x dx

exe−βµ − 1

= KV (kT )3/2

∫ ∞

0

√
x dx

z−1ex − 1
(8.3.2)

=
gsV

π2
√

2

(
mkT

~2

)3/2 √
π

2
g 3

2
(z)

=
gsV

λ3
g 3

2
(z) (8.3.3)

The general integral

gn(z) =
1

Γ(n)

∫ ∞

0

xn−1 dx

z−1ex − 1
(8.3.4)
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is discussed at length in Pathria, App. D.
Remembering the partition function (7.2.8), in order for the sum to converge to

(7.2.9) for bosons, we required µ ≤ 0 (for µ = 0 the series converges for εr > 0).
If z = eβµ < 1, that is if βµ < 0, then express the denominator in (8.3.2) as a
geometric series (1− y)−1 =

∑∞
`=0 y

` so that

1

z−1ex − 1
= (ze−x)

1

1− ze−x
= (ze−x)

∞∑

`=0

(ze−x)` =
∞∑

`=1

(ze−x)` (8.3.5)

and ∫ ∞

0

√
x dx

z−1ex − 1
=

∫ ∞

0

dx
√
x

∞∑

`=1

z`e−`x . (8.3.6)

We can evaluate the `th integral

∫ ∞

0

dx
√
x e−`x =

√
π

2`3/2
(8.3.7)

yielding

N = KV (kT )3/2

√
π

2

∞∑

`=1

z`

`3/2
. (8.3.8)

This series converges for 0 < z ≤ 1 (−∞ < µ < 0), and N is largest when z = 1
(µ = 0)

g 3
2
(z) ≤ g 3

2
(1) = 1 +

1

23/2
+

1

33/2
+ . . . = ζ(3

2
) ' 2.612 . . . . (8.3.9)

This implies N is bounded beneath some Nmax (at fixed V , T ).
In fact N = Nmax occurs when µ = 0 and decreases monotonically as µ→ −∞.

This is strange. Consider a gas with fixed density N ′/V and decrease T . With
fixed density g 3

2
(z) should vary like T−3/2 to compensate the explicit factor (kT )3/2.

However g 3
2
(z) can increase only until it reaches g 3

2
(1) which occurs at a temperature

we will call Tc. At Tc

N

V
= K(kTc)

3/2

√
π

2
ζ(3

2
) . (8.3.10)

This signals a phase transition to a Bose-Einstein condensate. Note we found
a Tc > 0 because the sum (8.3.9) converged for all z of interest. Bose-Einstein
condensation would not occur if we had an unbounded series (e.g. in 2 dimensions,
as you should verify).

Below Tc, then µ is strictly zero and we define a number

N ′ ≡ KV (kT )3/2

√
π

2
ζ(3

2
) . (8.3.11)

This is the number of particles which contribute to (8.3.2):

∫ ∞

0

g(ε) dε

eβε − 1
= N ′ ≤ N for T ≤ Tc . (8.3.12)
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Figure 16: Fraction of bosons in ground state N0/N and those in states with ε > 0,
N ′/N . Below the critical temperature, N0 becomes macroscopic.

But notice that since g(ε) ∝ √
ε, the particles with ε = 0 do not contribute to

(8.3.2). Requiring the density to remain constant as we lower T below Tc means
that a growing number of particles N0 move to the ε = 0 state so that

N = N0 + N ′ . (8.3.13)

Below Tc, then

N ′

N
=

(
T

Tc

)3/2

(8.3.14)

N0

N
= 1 −

(
T

Tc

)3/2

. (8.3.15)

See Figure 16. Particles condense into the ε = 0 state, a macroscopic number of
particles are in a single quantum state.

In the T < Tc phase

E = KV

∫ ∞

0

ε3/2 dε

eβε − 1

= KV (kT )5/2 Γ(5
2
)ζ(5

2
)

=
3

2
(kT )

V

λ3
ζ(5

2
) . (8.3.16)
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Solving for similar pre-factors in (8.3.10) We find

E =
3

2

ζ(5
2
)

ζ(3
2
)
NkT

(
T

Tc

)3/2

(8.3.17)

= ANkT

(
T

Tc

)3/2

(8.3.18)

= AN ′kT (8.3.19)

The constant A is defined implicitly, and ζ(5
2
) ' 1.341.

The heat capacity

CV =
∂E

∂T

∣∣∣∣
V

=
5

2
ANk

(
T

Tc

)3/2

=
5

2

E

T
. (8.3.20)

From CV = T (∂S/∂T )V , we can calculate the entropy

S =

∫
dT

CV

T
=

5

3

E

T
∝ T 3/2 (8.3.21)

We note S → 0 as T → 0. The free energy

F = E − TS = E − 5

3
E = − 2

3
E (8.3.22)

which implies through extensivity (F = −PV ) that

P =
2

3

E

V
. (8.3.23)

We state without proof that there is a discontinuity in the derivative of CV at
T = Tc originating from a discontinuity in the 2nd derivative in µ

−µ ∝





(T − Tc)
2 for 0 <

T − Tc

Tc

¿ 1

0 for T ≤ Tc

(8.3.24)

Therefore (∂CV /∂T )V,N has a term proportional to (∂2µ/∂T 2)V,N and is discontin-
uous. This is a common feature of phase transitions.

Superfluidity in liquid helium-4 is a consequence of Bose-Einstein condensation,
but in a dense, interacting system instead of a weakly interacting gas. Bose-Einstein
condensation of pairs of fermions, which are therefore composite bosons, is an impor-
tant phenomenon in nuclei and compact stars (like neutron stars). In 1995 trapped
alkali atoms were finally cooled to temperatures below which they formed a Bose-
Einstein condensate. The leaders of the experiments – E Cornell and C Wieman
(JILA, Colorado), and W Ketterle (MIT) – were awarded the Nobel prize in 2001.
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