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10 Classical statistical mechanics

10.1 Motivation and derivation from quantum mechanics

Several times in the previous chapters we have taken the limit V/N ≫ λ3, equiv-
alently e−βµ ≫ 1, calling it interchangeably the high T limit or the classical limit.
We always recovered classical results from quantum results. Here we show that
we can take this limit directly from the canonical quantum partition function, ob-
taining a classical partition function which depends on the classical Hamiltonian.
In this way, very similar statistical mechanics builds a bridge between microscopic
degrees-of-freedom, now taken to be truly classical, and macroscopic thermody-
namics. Of course this route historically preceded the quantum treatment we have
utilised throughout this course. This is actually a sufficient approach when dealing
with the classical regime. We only need the quantum treatment when V/N ∼ λ3.

Consider for a moment the partition function of a single quantum particle in 1
dimension as the sum of the Boltzmann factor for all microstates r

z =
∑

r

e−βεr =
∑

r

〈r|e−βĤ|r〉 (10.1.1)

insert 2 complete sets of coordinate eigenstates

z =
∑

r

〈r|
[
∫

dq |q〉〈q|
]

e−βĤ

[
∫

dq′ |q′〉〈q′|
]

|r〉

=

∫

dq dq′ 〈q|e−βĤ |q′〉
∑

r

〈q′|r〉〈r|q〉 .

Summing over r gives 〈q′|q〉 = δ(q′ − q), so

z =

∫

dq 〈q|e−βĤ |q〉 (10.1.2)

Let Ĥ(p̂, q̂) = K̂(p̂) + V̂ (q̂)

e−βĤ = e−βK̂(p̂)e−βV̂ (q̂) + O (~) (10.1.3)

We can only write the exponential of a sum as the product of exponentials if the
summands commute. Recalling that [q̂, p̂] = i~. Then if we are only interested in
terms which do not vanish in the ~ → 0 limit, we can commute coordinate and
conjugate momentum operators.

Having separated the kinetic and potential terms, we can evaluate the partition
function in the classical limit

z =

∫

dq e−βV (q)〈q|e−βK̂(p̂)|q〉

=

∫

dq e−βV (q)〈q|
∫

dp dp′|p〉〈p|e−βK̂(p̂)|p′〉〈p′|q〉

=

∫

dq

∫

dp |〈q|p〉|2 e−βK(p)e−βV (q)

=
1

2π~

∫

dq dp e−βH(p,q) (10.1.4)
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H(p, q) is the classical Hamiltonian. Above we used

〈q|p〉 =
1√
2π~

eipq/~ (10.1.5)

Note that (10.1.4) integrates over all points in classical phase space. This is the
classical analogue of summing over all quantum microstates. The factor of 1/(2π~)
for each pair of coordinate and conjugate momentum serves to satisfy Nernst’s theo-
rem, that the entropy is zero at T = 0. It is considered to be part of the integration
measure. We can drop it at the expense of carrying an additive shift in S.

With the partition function in hand, the development of classical statistical me-
chanics parallels quantum statistical mechanics. The integrand in (10.1.4) defines
the classical statistical distribution function

ρ(p, q) =
1

z
e−βH(p,q) . (10.1.6)

Expectation values are given by

〈f(p, q)〉 =

∫

dq dp f(p, q) e−βH(p,q)/(2π~)
∫

dq dp e−βH(p,q)/(2π~)
. (10.1.7)

For example, the average energy of this 1-particle “system” is given by

E = 〈H(p, q)〉 = − ∂

∂β
log z . (10.1.8)

10.2 Monatomic gas

Consider an ideal classical gas of structureless particles, in other words, a monatomic
gas. The Hamiltonian is simply the kinetic energy

H =

N
∑

n=1

|pn|2
2m

(10.2.1)

where we can take pn to be the momentum of the nth particle in D dimensions.
The partition function for the system can be written as the product of N inde-

pendent single particle partition functions

Z =
zN

N !
(10.2.2)

where

z =
1

(2π~)D

∫

dDx dDp e−βH (10.2.3)

=
V

(2π~)D

D
∏

j=1

∫ ∞

−∞

dpj e−β p2

j
/2m

=
V

(2π~)D

(

2mπ

β

)D/2

=
V

λD
(10.2.4)
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As in our quantum derivation §4.2, the thermal wavelength λ =
√

2π~2/mkT ap-
pears.

Yet again we find that

E = − ∂

∂β
log Z =

D

2
NkT (10.2.5)

yields the classical equipartition of energy. This is a consequence of the fact that
the momentum components pj enter the Hamiltonian quadratically.

Often, e.g. in kinetic theory, one works not with momenta, but with velocities

z =
V

(2π~)D

∫

dDp e−β|p|2/2m

=
mDV

(2π~)D

∫

dDv exp

(

−m|v|2
2kT

)

=
mDV

(2π~)D
SD

∫ ∞

0

dv vD−1 exp

(

−mv2

2kT

)

(10.2.6)

where SD is the surface area of a D−dimensional sphere. The integrand in (10.2.6)
is the Maxwell distribution (Fig. 20)

f(v) = N vD−1 exp

(

−mv2

2kT

)

(10.2.7)

with N a normalisation factor.

10.3 Diatomic gas

Now consider 2 structureless atoms joined together to make a diatomic molecule. In
addition to translational degrees-of-freedom, the molecule can rotate in the dimen-
sions perpendicular to its axis of symmetry.

The Lagrangian is just the kinetic energy

L = K = 1
2
m|ẋ|2 + 1

2
I

(

θ̇2 + sin2 θ φ̇2
)

(10.3.1)

specialising to 3 dimensions now for simplicity. First we find the momenta conjugate
to the generalised coordinates in the Lagrangian

pj =
∂L

∂ẋj

= mẋj (10.3.2)

pθ =
∂L

∂θ̇
= I θ̇ (10.3.3)

pφ =
∂L

∂φ̇
= I sin2 θ φ̇ (10.3.4)

We obtain the classical Hamiltonian by Legendre transform

H =
∑

j

q̇jpj − L

= ẋjpj + θ̇ pθ + φ̇ pφ − K

=
|p|2
2m

+
p2

θ

2I
+

p2
φ

2I sin2 θ
(10.3.5)
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Figure 20: The Maxwell distribution.

The single particle partition function is then

z =
1

(2π~)5

∫

d3p d3x dpθ dθ dpφ dφ e−βH (10.3.6)

We can factorise this into translational and rotational contributions

z = zt zr (10.3.7)

where zt = V/λ3 as in the previous section and

zr =
1

(2π~)2

∫

dpθ dθ dpφ dφ exp

[

− β

2I

(

p2
θ +

p2
φ

sin2 θ

)]

(10.3.8)

Doing the momentum integrals we find

zr =
1

(2π~)2

√

2πI

β

∫ π

0

dθ

√

2πI sin2 θ

β

∫ 2π

0

dφ

=
1

(2π~)2

2πI

β

∫ π

0

dθ sin θ

∫ 2π

0

dφ =
2I

β~2
(10.3.9)

Collecting all the factors of kT we find z = ztzr ∝ (kT )5/2. Given that Z = zN/N !
we find the mean energy of a gas of diatomic molecules (with vibrations “frozen”)

E = − ∂

∂β
log Z =

5

2
NkT (10.3.10)
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Figure 21: Vibrations in a diatomic molecule. The atoms (solid circles) are each dis-
placed xv/2 from their equilibrium positions (dashed circles); i.e. the energy stored
in the spring is mω2x2

v/2.

as we expect for a system with 3 translational and 2 rotational degrees-of-freedom
per particle.

Now we consider vibrations. We can approximate the molecule as a harmonic
oscillator (fig. 21). Let xv be the displacement of the 2 atoms in the molecule away
from their vibrational equilibrium state. The vibrational Hamiltonian is

H =
p2

v

2m
+

1

2
mω2x2

v (10.3.11)

and the single particle contribution to the partition function is

zv =
1

2π~

∫

dpv dxve
−β p2

v/2m e−βm ω2x2
v/2

=
1

2π~

√

2πm

β

√

2π

mω2β
=

kT

~ω
. (10.3.12)

Writing

Z =
1

N !
(zt zr zv)

N (10.3.13)

we find the mean energy of a gas of diatomic molecules to be

E =
7

2
NkT (10.3.14)

In addition to the translational and rotational degrees-of-freedom, we add 2 degrees-
of-freedom (xv and pv) for the harmonic vibrations.

10.4 Magnetism and thermodynamics

In previous discussions of thermodynamics we had 2 independent variables, for ex-
ample entropy and volume, and 2 dependent variables, pressure and temperature
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in this example. We can introduce external independent variables like an external
magnetic field B. The response of the system to this new external variable will
be a change in the system energy with some response coefficient. In the case of a
magnetic field

dE|S,V = −M · dB (10.4.1)

where M is the magnetisation. For the moment we will consider M parallel to a
constant B for simplicity. In this case

dE = TdS − P dV − M dB (10.4.2)

Recalling that the free energy F = E − TS = −kT log Z we find

dF = − SdT − P dV − M dB (10.4.3)

implies the magnetisation can be calculated as

M = − ∂F

∂B

∣

∣

∣

∣

T,V

= kT
∂

∂B
log Z

∣

∣

∣

∣

T,V

(10.4.4)

As promised, the magnetisation is the response of the free energy to a varying
magnetic field B.

10.5 Model of a paramagnet

Let us consider a solid lattice of N diatomic molecules, each with magnetic dipole
moment µ. (Ignore vibrations and translations of any kind.) Then the classical
Hamiltonian consists just of the rotational terms from §10.3 plus a term coupling
the magnetic moments to an external magnetic field B, taken to be constant here

H =
1

2I

(

p2
θ +

p2
φ

sin2 θ

)

− µ · B (10.5.1)

=
1

2I

(

p2
θ +

p2
φ

sin2 θ

)

− µB cos θ . (10.5.2)

In the last step, we chose a spherical polar coordinate system where B = Bẑ. The
single particle partition function is

z =
1

(2π~)2

√

2πI

β

√

2πI

β
2π

∫ π

0

sin θ dθ eβµB cos θ (10.5.3)

=
I

β~2

2 sinh y

y
(10.5.4)

where y = βµB. The integrals over pθ and pφ are responsible for the first two square
roots in (10.5.3), the integral over φ for the 2π, and the integration over θ is done
by setting x = cos θ.
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Figure 22: Magnetisation M of a classical paramagnet versus the dimensionless
ration µB/kT .

The magnetisation is calculated from

M = kT
∂

∂B
log Z

∣

∣

∣

∣

T,V

(10.5.5)

= NkT
∂

∂B
log

(

2I

β~2

sinh y

y

)

= NkT
∂

∂B

[

log(sinh y) − log y
]

recall y = βµB

= Nµ

(

coth y − 1

y

)

. (10.5.6)

This curve is plotted in Figure 22. For small B or high T , y is small

coth y =
cosh y

sinh y
≃ 1 + 1

2
y2

1 + 1
6
y3

≃ 1

y
+

y

3
(10.5.7)

Therefore, for small y

M = Nµ
y

3
=

Nµ2B

3kT
(10.5.8)

which is known as Curie’s law.

Further reading
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Ch. 7.
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