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6 Grand canonical ensemble

We repeat much of our discussion of Chapter 2, with the new flexibility of allowing
the particle number to fluctuate about an average.

6.1 Grand partition function

As before we consider A replicas of system S. We count the number of replicas in
state |i〉 and denote that number by ai. Note that each microstate corresponds to a
definite, but not common, particle number

Ĥ|i〉 = Ei|i〉
N̂ |i〉 = Ni|i〉 . (6.1.1)

Recall the spin system introduced in Chapter 2, Eqn. (2.1.2). In the grand canonical
ensemble, we might have ensembles like

E (1) = {|+〉, | − −〉, |+〉, |+−−〉, |−〉}
E (2) = {| −+〉, | −+ + +〉, |−〉, |+−〉, | −+−〉} (6.1.2)

where the particle number fluctuates between snapshots. Then we have a much
larger space of allowed microstates |i〉. We again look at our ensemble and count
how many times ai a given microstate occurs.

We will again find those {ai} which can be realised in the largest number of
ways, subject to the constraints of conservation of number of replicas (A), of energy
fluctuations about a mean system energy (E), and of particle number fluctuations
about a mean particle number (N)

∑
i

ai = A (6.1.3)

∑
i

aiEi = AE (6.1.4)

∑
i

aiNi = AN . (6.1.5)

Hence we need to introduce 3 Lagrange multipliers to solve

∂

∂aj

(
log W − α

∑
i

ai − β
∑

i

aiEi − γ
∑

i

aiNi

)
= 0 (6.1.6)

where

W =
A!∏
i ai!

. (6.1.7)

Hence
∂

∂aj

(−ai log ai − αai − βaiEi − γaiNi) = 0 (6.1.8)
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or

log aj + 1 + α + βEj + γNj = 0 (6.1.9)

aj = e−(1+α) e−βEj e−γNj (6.1.10)

aj = e−(1+α) e−β(Ej−µNj) (6.1.11)

which defines the chemical potential µ = −γ/β. Thus we write down the statis-
tical distribution function for the grand canonical ensemble, also called the Gibbs
distribution,

ρi =
ai

A
=

1

Z e−β(Ei−µNi) (6.1.12)

where the normalisation factor

Z =
∑

i

e−β(Ei−µNi) (6.1.13)

is called the grand canonical partition function.
As usual,

〈E〉 ≡ E =
∑

i

ρiEi (6.1.14)

but also
〈N〉 ≡ N =

∑
i

ρiNi (6.1.15)

The chemical potential and the inverse temperature play similar roles: just as the
inverse temperature β is a Lagrange multiplier constraining the energy to fluctuate
narrowly about a mean energy, the chemical potential µ constrains the particle
number to fluctuate about a mean particle number. As with β, there is only one µ
which characterises a system, or subsystems, in equilibrium.

6.2 Thermodynamics

Taking derivatives of the grand partition function (6.1.13) we find

N =
1

β

∂

∂µ
logZ

∣∣∣∣
β,V

(6.2.1)

and

E − µN = − ∂

∂β
logZ

∣∣∣∣
µ,V

. (6.2.2)

Now to derive the first law of thermodynamics from the grand canonical ensem-
ble, we recall from (3.2.5) that S = −k

∑
i ρi log ρi and from subsequent discussion

that
dS = − k

∑
i

dρi log ρi (6.2.3)

which, for the grand canonical ensemble, implies

dS =
1

T

∑
i

dρi (Ei − µNi) . (6.2.4)
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From the product rule

∑
i

dρi Ei = dE −
∑

i

ρi dEi (6.2.5)

∑
i

dρi Ni = dN −
∑

i

ρi dNi (6.2.6)

we find
TdS = dE − µ dN −

∑
i

ρi(dEi − µ dNi) . (6.2.7)

The pressure is

P =
1

β

∂ logZ
∂V

∣∣∣∣
β,µ

(6.2.8)

= −
∑

i

ρi

(
∂Ei

∂V
− µ

∂Ni

∂V

)
(6.2.9)

Therefore, (6.2.7) becomes, after rearrangement,

dE = TdS − P dV + µ dN
= d̄Q + d̄Wmech + d̄Wchem .

(6.2.10)

We see an additional contribution to the first law. In addition to energy change
from heat and mechanical work, there is a new possibility of chemical work done by
adding or subtracting particles. We can see from (6.2.10)

µ =
∂E

∂N

∣∣∣∣
S,V

. (6.2.11)

In addition to a modified expression for an infinitesimal change in energy, we
see the other thermodynamic potentials also receive contributions due to particle
number fluctuations

dF = d(E − TS) = −S dT − P dV + µ dN (6.2.12)

dG = d(F + PV ) = −S dT + V dP + µ dN (6.2.13)

dH = d(E + PV ) = TdS + V dP + µ dN (6.2.14)

The entropy in the grand canonical ensemble is given by

S = − k
∑

i

ρi log ρi (6.2.15)

Inserting the distribution (6.1.12)

S = − k
∑

i

ρi [−β (Ei − µNi) − logZ] (6.2.16)

=
1

T
(E − µN) + k logZ (6.2.17)
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We can do some repackaging to find

S =
1

T

(
− ∂

∂β
logZ

)

µ,V

+ k logZ (6.2.18)

= kT
∂

∂T
logZ

∣∣∣∣
µ,V

+ k logZ (6.2.19)

=
∂

∂T
(kT logZ)µ,V . (6.2.20)

6.3 Grand potential

Along with the usual thermodynamic potentials, we can define another as the Leg-
endre transform of F as

Ω = F − µ N (6.3.1)

so that
dΩ = − S dT − P dV − Ndµ . (6.3.2)

We thought about scale transformations when earlier, with a scale factor of 2.
Now let us scale the volume, and other extensive quantities, by a factor λ: V → λV
and N → λN . E, which is a function of independent variables S, V , and N , must
also scale like λ

E(λS, λV, λN) = λE(S, V, N) . (6.3.3)

Differentiating with respect to λ and then setting λ = 1, we find

E =
∂E

∂S

∣∣∣∣
V,N

S +
∂E

∂V

∣∣∣∣
S,N

V +
∂E

∂N

∣∣∣∣
S,V

N (6.3.4)

= TS − P V + µN (6.3.5)

where the coefficients of S, V and N can be read off from (6.2.10). Similarly, the
free energy F = F (T, V, N) must be extensive, so

F (T, λV, λN) = λF (T, V, N) (6.3.6)

(remember that T is intensive). Consequently,

F =
∂F

∂V

∣∣∣∣
T,N

V +
∂F

∂N

∣∣∣∣
T,V

N (6.3.7)

= −P V + µN . (6.3.8)

The latter line (6.3.8) follows from (6.2.12). Another derivation follows from (6.3.5)
and the definition F = E − TS.

We can either use extensivity

Ω(T, λV, µ) = λΩ(T, V, µ) (6.3.9)

(µ is intensive) or (6.3.1) to show that

Ω = − P V . (6.3.10)
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Applying F = E − TS and (6.2.17) to (6.3.1) we find

Ω = E − TS − µN

= E − (E − µN + kT logZ) − µN

= −kT logZ . (6.3.11)

Thus Ω plays the role in the grand canonical ensemble that F played in the canonical
ensemble. Explicitly putting subscripts in to denote the different partition functions:

ZGCE = e−β Ω , ZCE = e−βF . (6.3.12)

Further reading

1. F Mandl, Statistical Physics, (Wiley & Sons, 1988), Chapter 9.


