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4 Ideal gas

We now develop some of the ideas introduced above in the context of an ideal gas,
also called a perfect gas.

4.1 Density of states

Recall from the example of Section 1.4 that the stationary states of the free Hamil-
tonian in a cubic, periodic box could be labelled by wave vectors k (1.2.3). In the
thermodynamic limit (1.2.5) the allowed values of k become continuous. In this
limit we can replace the sum over microstates, which may be difficult to carry out
in practice, with an integral over k. In order to make this replacement, we need to
know the number of microstates in an infinitesimal range of k, namely the density
of states.

Consider a fixed range in one direction (kx, kx + dkx). As L is increased, the
number, dnx, of integers nx which satisfy

2πnx

L
∈ (kx, kx + dkx) (4.1.1)

also increases. In fact it is dnx = (L/2π)dkx. Figure 7 shows how this number
increases as L is increased. Thus the number of states in an infinitesimal volume in
k−space is

d3n =
V

(2π)3
d3k (4.1.2)

where the volume V = L3.
The quantum (not thermal) expectation value of some observable X̂ is given by

the sum over single particle states which we label by |k〉

〈X̂〉 =
∑

k

〈k|X̂|k〉 . (4.1.3)

(We will, of course, eventually be interested in thermal expectation values, but
this type of sum must be done in that case too.) In the thermodynamic limit the
allowed values of k tend toward a continuum, and over an infinitesimal range of
wavevectors observables are nearly constant. Therefore, in this infinitesimal range
we can approximate summation over wavevectors by a constant over this range X(k)
times the number of states in that range:

k+dk∑

k′=k

〈k′|X̂|k′〉 = X(k) d3n =
V

(2π)3
X(k) d3k . (4.1.4)

The quantities we will look at depend only on the microstate energies ε, which are
functions of k = |k|, or p = ~k. Therefore, we can perform the angular integral over
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Figure 7: Ten lowest allowed wavenumbers kx (in units of 2π) in a box with length
L in the x−direction. The number of states in a range of kx increases as L increases
as dnx = L dkx/(2π). In the figure dnx = 1 at L = 1 and dnx = 10 at L = 10.

the direction of k:

〈X̂〉 =
V

(2π)3

∫
X(ε(k)) d3k

=
V

(2π~)3

∫
X(ε(p)) 4πp2 dp ≡

∫
X(ε(p)) g(p) dp (4.1.5)

=
V

2π2~3

∫
X(ε) p2 dp

dε
dε ≡

∫
X(ε) g(ε) dε . (4.1.6)

In the last two lines, we have implicitly defined the density of states in momentum

g(p) =
V

2π2~3
p2 (4.1.7)

and in energy

g(ε) =
V

2π2~3
p2 dp

dε
. (4.1.8)

The first definition is nice because it is the same for any energy-momentum relation
in 3 dimensions. The second definition is useful in practice, as we will see. Note
that although we use the same symbol, g(p) and g(ε) are different functions, related
by

g(p) dp = g(ε) dε . (4.1.9)
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Most of the time we will be discussing gases of nonrelativistic particles, for which

ε(p) =
p2

2m
. (4.1.10)

Then the density of states becomes

g(ε) =
V

4π2

(
2m

~2

)3/2√
ε . (4.1.11)

Including internal degrees-of-freedom increases the density of states due to degen-
eracies. For example, the degeneracy of massive particles with spin s is gs = 2s+ 1;
gs unique states can have the same spatial wavefunction ψk(x). Therefore, we must
multiply the spin-zero density of states (4.1.11) by gs

g(ε) = gs
V

4π2

(
2m

~2

)3/2√
ε . (4.1.12)

In arbitrary numbers of dimensions, we must generalise the angular integration,
obtaining

g(ε) = gs
V SD

(2π~)D
pD−1 dp

dε
. (4.1.13)

SD is the surface area of a unit sphere in D dimensions.
On other occasions we might be interested in a gas of relativistic particles, having

dispersion relation ε(p) =
√
p2c2 +m2c4. If those particles are photons, with m = 0

and gs = 2 (photons have no longitudinal polarisation) then

g(ε) dε = V
ε2 dε

π2~3c3
(4.1.14)

or, writing ε = ~ω,

g(ω) dω = V
ω2 dω

π2c3
. (4.1.15)

4.2 Partition function

In order to compute the partition function for an ideal gas, let us first define for a
single particle the quantity

z =
∑

k

e−βεk (4.2.1)

=

∫ ∞

0

dε g(ε) e−βε (4.2.2)

=
V

4π2

(
2m

~2

)3/2 ∫ ∞

0

dε
√
ε e−βε . (4.2.3)

If we substitute y2 = βε, which implies dε = 2y dy/β, then

z =
V

4π2

(
2m

~2

)3/2
2

β3/2

∫ ∞

0

dy y2 e−y2

(4.2.4)
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The integral can be shown to be equal to
√
π/4.5 Therefore

z = V

(
mkT

2π~2

)3/2

=
V

λ3
(4.2.5)

where the last step defines the thermal wavelength (sometimes written λT if there
are other lambdas in use.)

λ ≡
√

2π~2

mkT
. (4.2.6)

In Chap. 7 we will see that thermal behaviour is classical as long as the mean
interparticle spacing (V/N)1/3 is much bigger than λ. In other words, the particles
are far enough apart that the wave-like nature of the quantum particles is negligible.
Conversely, quantum effects are resolvable when (V/N)1/3 comparable to λ. One way
to leave the classical regime is to lower the temperature, consequently lengthening
λ.

For N independent particles, we take the product

Z = zN . (4.2.7)

Let us obtain the average energy from this partition function. Note that (4.2.5)
implies

z ∝ (kT )3/2 (4.2.8)

which generalises in D dimensions to

z ∝ (kT )D/2 . (4.2.9)

Then

E = − ∂

∂β
logZ

∣∣∣∣
V

= −N ∂

∂β
log z

∣∣∣∣
V

= −N ∂

∂β

(
−D

2
log β

)∣∣∣∣
V

=
D

2
NkT . (4.2.10)

The last line derives a principle of classical thermodynamics called the equipar-
tition of energy: that the average energy per particle degree-of-freedom is 1

2
kT .

(This assumes that the particle energy depends quadratically on that degree-of-
freedom. In an ideal gas a particle’s energy is entirely kinetic, and varies quadrati-
cally in ẋi.)

5Remember the Gaussian integral I(a) ≡ ∫∞
−∞dx exp(−ax2) =

√
π/a. Differentiating both

sides of the equality by a and setting a = 1 gives us the result we desire times 2 (due to the
different lower limit of integration).
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From (3.1.9) we saw that PV = 2
3
E for an ideal gas, therefore we find

PV = NkT (4.2.11)

which is known as the ideal gas law, Boyle’s law, and the ideal gas equation
of state. An equation of state gives the behaviour of dependent thermodynamic
variables in terms of independent variables.

4.3 Gibbs’ paradox

In this section we will see that we need to multiply the right-hand side of (4.2.7) by
another T−independent factor.

Let us compute the entropy for an ideal gas. From (3.3.4) we can obtain

S = − ∂F

∂T

∣∣∣∣
V

= − ∂

∂T
(−kT logZ)

∣∣∣∣
V

. (4.3.1)

Inserting Z = (V/λ3)N we obtain

S = Nk log V − 3Nk log λ +
3

2
Nk . (4.3.2)

In Chapter 3 we showed that the entropy should be extensive. The second and third
terms in (4.3.2) are both extensive, scaling like N (or equivalently like V ), but the
first term scales like N logN .

The problem is that, by taking Z = zN , we treat each particle as distinguishable,
saying that there are zN arrangements of the N particles. This is consistent with
ideas of classical physics: if we know all the particles’ initial positions and momenta,
then we can track them through all future moments (at least in principle). The
inconsistency of (4.3.2) with extensivity was known as Gibbs paradox.

The resolution of the paradox comes from realising that we should not treat
the particles as distinguishable, as classical mechanics would let us believe we are
capable of doing. We must treat the particles as indistinguishable, as quantum
mechanics forces us to do. (We will see this more clearly later.) To get rid of the
overcounting of (4.2.7), we must divide by the N ! indistinguishable permutations

Z =
zN

N !
(4.3.3)

then, using Stirling’s formula logN ! ' N logN − N , the entropy composed of 3
terms which are properly extensive:

S = Nk log
V

N
− 3Nk log λ+

5

2
Nk

= Nk

(
log

V

Nλ3
+

5

2

)
. (4.3.4)

The last line combines factors so that the argument of the logarithm is satisfyingly
dimensionless.
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4.4 Increase of entropy

We now state the second law of thermodynamics.6 For any thermodynamic
process, the total change in entropy is nonnegative:

∆Stotal ≥ 0 . (4.4.1)

We can decrease the entropy of a part of a system, by removing heat from it, but
then we must consider the entropy of the system and the heat sink before applying
the 2nd law. For the rest of this section, let us consider systems in isolation.

It is only for idealised processes, which we sometimes consider for illustration,
that ∆Stotal = 0. For real systems, which always have some loss due to friction, for
example, ∆Stotal is strictly positive. This fact is the reason why perpetual motion
machines do not exist.

Let us take 2 disconnected systems, each of which is in thermal equilibrium at
temperature T . System 1 is composed of an ideal gas of N1 particles of type 1,
in volume V1, and system 2 is composed of an ideal gas of N2 particles of type 2,
in volume V2. (This differs from our discussion in sections 3.4 and 3.5 where the
particles were all of the same type.) In this disconnected setup the total entropy is
just the sum of the individual entropies

Sinit = S1 + S2 before mixing (4.4.2)

with each entropy given by (4.3.4), which we rewrite here as

Si

k
= Ni log

Vi

(λi(T ))3Ni

+
5

2
Ni

= Ni log
Vi

Ni

+ Ni

[
3

2
log

(
mikT

2π~2

)
+

5

2

]

= Ni log
Vi

Ni

+ NiBi(T ) . (4.4.3)

The last line implicitly defines Bi(T ) as the quantity in square brackets above; it
differs between S1 and S2 if m1 6= m2.

Now connect the two boxes and let the gases mix. Call the new entropy S12.
Since the types of particles are distinguishable, they constitute separately identifiable
subsystems, both occupying volume V1 + V2. The partition function is then

Z12 =
zN1
1

N1!

zN2
2

N2!
. (4.4.4)

The fact that the denominator is not (N1 + N2)! is a consequence of the particle
types being distinct. Now the entropy can be calculated using (4.3.1) to be

S12

k
= N1

[
log

V1 + V2

N1

+ B1(T )

]

+ N2

[
log

V1 + V2

N2

+ B2(T )

]
. (4.4.5)

6An explanation of this law was given by Boltzmann using his kinetic theory, but it lies outside
the scope of this course.
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Note that this is the sum of the entropies each gas would have if it were alone in
volume V1 + V2, in other words the total entropy is the sum of partial entropies.
Now let us calculate the entropy of mixing

∆S = S12 − S1 − S2 = N1 log
V1 + V2

V1

+ N2 log
V1 + V2

V2

> 0 . (4.4.6)

The entropy of mixing together two distinguishable gases is always positive.
Now let us switch to imagining the 2 gases are in fact indistinguishable, made

up of the same particle type. Then

Z12 =
zN1+N2
12

(N1 +N2)!
(4.4.7)

and B1(T ) = B2(T ) = B12(T ). The entropy of the joined system is

S12

k
= (N1 +N2) log

V1 + V2

N1 +N2

+ (N1 +N2)B12(T ) . (4.4.8)

The initial entropies are the same as before. The change entropy due to mixing is

∆S = (N1 +N2) log
V1 + V2

N1 +N2

− N1 log
V1

N1

− N2 log
V2

N2

= log

[
(V1 + V2)

N1+N2

V N1
1 V N2

2

NN1
1 NN2

2

(N1 +N2)N1+N2

]
≥ 0 . (4.4.9)

Even with just one type of particle, the entropy of mixing is positive unless N2 = rN1

and V2 = rV1 for constant r. In this case, the densities of the 2 initial systems are
equal, so the mixing of the 2 systems can be viewed as a rescaling of S1 by a factor
(1 + r).

4.5 A few remarks on entropy

• Entropy is useful in the field of information theory. Entropy is an inverse
measure of information, in some sense. If entropy is large, then we have many
possible microstates. Forcing a system into a small set of microstates (by
gaining knowledge in this case) then entropy decreases.

• For 2 separate systems S1 and S2, the equilibrium entropies S1 and S2 were
separate maxima with 4 constraints (on N1, E1, N2 and E2). After mixing,
the final equilibrium is achieved by maximising S12 with fewer constraints: 3
constraints for distinguishable types (on N1, N2 and E1 +E2), or 2 constraints
for indistinguishable types (on N1+N2 and E1+E2). An increase in entropy is
equivalent to an increase in disorder, corresponding to a removal of constraints.

Further reading
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