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7 Quantum ideal gas

7.1 Particle interchange

The indistinguishability of particles implies that the multi-particle wavefunction
must be the same, up to a complex phase, as the one corresponding to an interchange
of particle position. If we swap two particles which are at positions x1 and x2, also
swapping any internal states α1, α2 they might be in (like spin) then we must have

Ψ(x2, α2,x1, α1, . . . ,xN , αN ; t) = eiθ Ψ(x1, α1,x2, α2, . . . ,xN , αN ; t) . (7.1.1)

In nature, only 2 values for θ are observed (leaving aside composite excitations in 2
dimensions, called anyons):

Ψ(x2, α2,x1, α1, . . . ,xN , αN ; t) =

{
+Ψ(x1, α1,x2, α2, . . . ,xN , αN ; t) bosons
−Ψ(x1, α1,x2, α2, . . . ,xN , αN ; t) fermions

(7.1.2)
The spin-statistics theorem of quantum field theory says that particles with integer
spin are bosons, while those with half-integer spin are fermions.

If the particles are non-interacting (as in an ideal gas) then the wavefunction is
separable

Ψ(x1, α1,x2, α2, . . . ,xN , αN ; t) = ψ1(x1, α1; t)ψ2(x2, α2; t) · · · ψN(xN , αN ; t)
(7.1.3)

For brevity, we will now stop explicitly writing wavefunctions as functions of time.
We can work with symmetrized (bosons) or anti-symmetrized (fermions) wave-

functions. For 2 particles, for example,

Ψ(x1, α1,x2, α2) =

√
1

2

(
ψ1(x1, α1)ψ2(x2, α2) ± ψ1(x2, α2)ψ2(x1, α1)

)
(7.1.4)

The generalisation to N bosons is straightforward, we just sum over all permutations
of positions in theN single particle wavefunctions. ForN fermions the antisymmetry
is realised through the Slater determinant:

Ψ =

√
1

N !

∣∣∣∣∣∣∣∣∣

ψ1(x1, α1) ψ1(x2, α2) . . . ψ1(xN , αN)
ψ2(x1, α1) ψ2(x2, α2) . . . ψ2(xN , αN)

...
...

ψN(x1, α1) ψN(x2, α2) . . . ψN(xN , αN)

∣∣∣∣∣∣∣∣∣
(7.1.5)

As required, the fermionic Ψ vanishes if ψi = ψj. This is a realisation of Pauli’s
exclusion principle, that no 2 fermions can be in the same single particle state.

We do not need these (anti)symmetrized wavefunctions for the following discus-
sion, but we will use the Pauli exclusion principle.

7.2 Mean occupancy

Below we need an index r to label the single particle states in addition to a label i
for the multi-particle states. In state |i〉 there are nr particles in the single particle



7 QUANTUM IDEAL GAS 47

state |r〉. We might write, for example, |i〉 = |r〉 ⊗ |s〉 ⊗ . . . ⊗ |q〉, where s and q
are other single particle states, and where r might appear again in the ellipsis. The
total number of particles in |i〉 is Ni and the energy of |i〉 is Ei, so

Ni =
∑

r

n(i)
r , Ei =

∑
r

n(i)
r εr (7.2.1)

The superscript (i) is used on the right-hand sides since different multi-particle
states correspond to different products of single particle states.

The grand partition function

Z =
∑

i

exp (−β (Ei − µNi))

=
∑

i

exp

[
−β

(∑
r

n(i)
r εr − µ

∑
r

n(i)
r

)]
(7.2.2)

=
∑

i

∏
r

exp
[−βn(i)

r (εr − µ)
]

(7.2.3)

This form of the partition function is useful for deriving the mean occupancy of a
specific single particle state. Let us differentiate Z with respect to the single particle
energy εs, keeping everything else constant

∂Z
∂εs

∣∣∣∣
β,µ,εr 6=s

=
∑

i

(−βn(i)
s )

∏
r

e−βn
(i)
r (εr−µ) . (7.2.4)

So we can see now that the mean number of particles occupying state s is given by

n̄s ≡ 〈ns〉 =
1

Z
∑

i

n(i)
s

∏
r

e−βn
(i)
r (εr−µ)

or

n̄s = − 1

β

(
∂

∂εs

logZ
)

β,µ,εr 6=s

. (7.2.5)

It will also be useful below to trade the sum over microstates for a sum over all
allowed values of nr. We can replace

∑
i

→
∑
n1

∑
n2

· · · (7.2.6)

Generalising the identity
∑

j,k,`

XjYkZ` = (X1 +X2 + . . .)(Y1 + Y2 + . . .)(Z1 + Z2 + . . .)

=
[∑

j

Xj

][ ∑

k

Yk

][ ∑

`

Z`

]
(7.2.7)

we arrive at the following for the ideal gas grand partition function

Z =

[∑
n1

exp [−βn1 (ε1 − µ)]

][∑
n2

exp [−βn2 (ε2 − µ)]

]
· · ·
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which yields

Z =
∏

r

∑
nr

exp (−βnr (εr − µ)) . (7.2.8)

This form of the partition function takes on simple forms depending on specific
allowed values for nr. We will see this next.

Bosons

For bosons, the sums in (7.2.8) are straightforward to evaluate. In this case 0 ≤
nr <∞ and the series is geometric;

∑∞
n=0 x

n = 1/(1− x), if |x| < 1. Therefore,

Z =
∏

r

1

1 − e−β(εr−µ)
. (7.2.9)

Convergence requires that µ must be less than the lowest energy state. The mean
particle number is

N =
1

β

(
∂

∂µ
logZ

)

β,V

=
∑

r

1

eβ(εr−µ) − 1
. (7.2.10)

We can find the mean number of particles in the single particle state s using (7.2.4)

n̄s = − 1

β

(
∂

∂εs

logZ
)

β,µ,εr 6=s

=
1

eβ(εs−µ) − 1
. (7.2.11)

Eqn. (7.2.11) is called the Bose-Einstein distribution. Instead of working with
a probability distribution which is a function of the multiparticle state |i〉, we work
with a distribution of occupation numbers refering to single particle states labelled
by r.

Fermions

For fermions nr = 0 or 1 only, due to Pauli’s exclusion principle. Thus the sums
over nr in (7.2.8) are easy

Z =
∏

r

(
1 + e−β(εr−µ)

)
(7.2.12)

and

N =
1

β

(
∂

∂µ
logZ

)

β,V

=
∑

r

1

eβ(εr−µ) + 1
. (7.2.13)

The mean occupancy is then

n̄s = − 1

β

(
∂

∂εs

logZ
)

β,µ,εr 6=s

=
1

eβ(εs−µ) + 1
. (7.2.14)

Eqn. (7.2.14) is called the Fermi-Dirac distribution.
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Degeneracies

If there are multiple states with energy εr, say g(εr), then

n̄(εr) =
g(εr)

eβ(εr−µ) ∓ 1
(7.2.15)

where the upper sign is for bosons and the lower sign for fermions.
In the thermodynamic limit, we can drop the label r on the energies ε, since the

whole continuum of energies are allowed.

n(ε) dε =
g(ε) dε

eβ(ε−µ) ∓ 1
(7.2.16)

Then

logZ = ∓
∫ ∞

0

dε g(ε) log
(
1 ∓ e−β(ε−µ)

)
(7.2.17)

(upper/lower signs for bosons/fermions). This implies

N =

∫ ∞

0

g(ε)dε

eβ(ε−µ) ∓ 1
(7.2.18)

E =

∫ ∞

0

ε g(ε)dε

eβ(ε−µ) ∓ 1
. (7.2.19)

The density of states for nonrelativistic particles in 3 dimensions in the thermo-
dynamic limit was calculated in (4.1.12). Then we find

logZ = ∓ gsV

4π2

(
2m

~2

)3/2 ∫ ∞

0

dε
√
ε log

(
1∓ e−β(ε−µ)

)
(7.2.20)

Integrating by parts yields

logZ =
gsV

4π2

(
2m

~2

)3/2
2

3
β

∫ ∞

0

ε3/2dε

eβ(ε−µ) ∓ 1

=
2

3
β

∫ ∞

0

εg(ε)dε

eβ(ε−µ) ∓ 1

=
2

3
βE (7.2.21)

The grand potential, Ω = −P V = −kT logZ, so

P V =
2

3
E . (7.2.22)

This form of the ideal gas equation of state agrees with our derivation using the
canonical ensemble (3.1.9). While the canonical ensemble is completely valid for
quantum systems, our treatment of ideal gases in Chapter 4 was valid only in the
classical limit, where the interparticle spacing (V/N)1/3 was much larger than the
thermal wavelength λ =

√
2π~2/(mkT ). If this is not the case, then the particle

wavefunctions in some sense overlap, and interference effects spoil the independence
which allowed us to write Z ∝ zN . In the grand canonical ensemble, we have treated
the full quantum regime properly. Below we see that, for example, the equipartition
of energy (4.2.10) holds only in the classical limit.
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7.3 Classical limit

For convenience, let us abbreviate the collection of constants

gs

4π2

(
2m

~2

)3/2

≡ K (7.3.1)

so that the nonrelativistic density of states in 3 dimensions is g(ε) = KV
√
ε. Let

us also introduce notation for a set of integrals

In(y) =

∫ ∞

0

xn dx

ex+y ∓ 1
(7.3.2)

where we will identify y = −βµ and x = βε. The expressions (7.2.18) and (7.2.19)
then become

N =
KV

β3/2
I 1

2
(−βµ) (7.3.3)

E =
KV

β5/2
I 3

2
(−βµ) . (7.3.4)

If e−βµ À 1 (i.e. if ey À 1) then denominator of the integrand in (7.3.2) can be
expanded

1

ex+y ∓ 1
= e−(x+y)

(
1± e−(x+y) + e−2(x+y) ± . . .

)
, (7.3.5)

using the Taylor expansion for (1 ∓ w)−n, where w = e−(x+y) is much smaller than
1. We will keep only the first 2 terms. For the particle number, we have

N =
KV

β3/2
eβµ

[∫ ∞

0

dx
√
x e−x ± eβµ

∫ ∞

0

dx
√
x e−2x + . . .

]
. (7.3.6)

The substitution u =
√
x makes clear these are Gaussian-type integrals, the first

equal to
√
π/4 and the second

√
π/8.

N =
KV

β3/2
eβµ

√
π

2

(
1 ± eβµ

2
√

2
+ . . .

)

=
gsV

λ3
eβµ

(
1 ± eβµ

2
√

2
+ . . .

)
. (7.3.7)

We can solve (7.3.7) for the following assortment of terms (in the process inverting
the Taylor expansion) to find

gs
V

Nλ3
= e−βµ

(
1 ∓ eβµ

2
√

2
+ . . .

)
. (7.3.8)

It is clear from this expression that the large e−βµ À 1 limit is the same as the limit
V/N À λ3. Recalling the definition of the thermal wavelength (4.2.6), we see the
classical limit is where

V

N
À

(
2π~2

mkT

)3/2

. (7.3.9)
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Note we have an explicit ~ on the right-hand side, highlighting that Planck’s constant
sets the scale for quantum physics. We can only see deviations from classical physics
when the right-hand side becomes comparable to the volume per particle, which
occurs at very low temperatures, for very small masses, or in very dense systems.

Similar manipulations for the energy lead to the following steps

E =
KV

β5/2
eβµ

[∫ ∞

0

dxx3/2 e−x ± eβµ

∫ ∞

0

dxx3/2 e−2x ± . . .

]

=
KV

β5/2
eβµ

(
3
√
π

4
± 3

16

√
π

2
eβµ + . . .

)

=
gsV

λ3
eβµ 3

2β

(
1 ± eβµ

4
√

2
+ . . .

)
. (7.3.10)

Solving (7.3.7) for gsV e
βµ/λ3 and inserting above we find

E =
N

β

(
1 ∓ eβµ

2
√

2
+ . . .

)
3

2

(
1 ± eβµ

4
√

2
+ . . .

)

=
3

2
NkT

(
1 ∓ eβµ

4
√

2
+ . . .

)
. (7.3.11)

We recover both the classical result (4.2.10) plus the leading quantum correction.
Using PV = 2

3
E we see the correction to the classical equation of state (4.2.11)

P V = NkT ∓ NP

(kT )3/2

1

K
√

8π
. (7.3.12)

Note that K−1 ∝ ~3, so this correction would indeed vanish if we were to take ~→ 0.
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