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1 Introduction

1.1 Overview

In previous theoretical physics courses you learned how to describe the motion of a
classical body like a billiard ball and how to find the quantum states of a microscopic
body like a single atom or electron, perhaps under the influence of an external
potential. You possibly have studied, or will study 2 bodies, classical or quantum,
scattering off of one another. In most cases the interest was clearly exactly in those
microscopic degrees-of-freedom.

The fields of thermodynamics and fluid dynamics, on the other hand, deal with
macroscopic phenomena. They focuses on relationships between macroscopic ob-
servables like pressure, volume, and temperature. Many of these relationships are
the same, or similar, for all systems, up to coefficients like heat capacities. These
coefficients are properties of specific gases and cannot be computed with the laws
of thermodynamics. They must be measured empirically, it would appear. In fact,
thermodynamics was thought to be fundamental until the reality of atoms was ac-
cepted, an acceptance which came in large part due to the success of statistical
mechanics.

Statistical physics is a bridge between the microscopic and the macroscopic. No
matter what the individual degrees-of-freedom, classical or quantum, it provides a
framework for studying a large number of assembled bodies. It takes as its input
the Hamiltonian H of a system, defines something called a partition function Z,
and allows us to compute thermodynamic relationships. Furthermore, specific coef-
ficients are computable with statistical mechanics from microscopic first principles.
In current research, the well-known laws governing nuclear interactions and quark
interactions are being used to find ways to distinguish between neutron stars and
quark stars. It is presently not known if the latter can exist. By making firm the-
oretical predictions perhaps a good signature of quark stars can be uncovered and
then a search for this signature can be done.

The bridge can also be traversed in the other direction. If the microscopic be-
haviour, 7.e. the Hamiltonian, is unknown then measurements of thermodynamic
properties can constrain the microscopic properties. A classic example is the spec-
trum of black-body radiation. Classical derivations did not agree with the observed
spectrum at low energies. It was only when Planck posited that light could be
interpreted as discrete quanta that correct spectrum emerged from his calculations.

Figure 1 gives a picture of this path from microscopic to macroscopic. Statistical
physics methods are also being extended to model financial markets and traffic
patterns.

1.2 Microstates

A microstate is a unique arrangement of the microscopic degrees-of-freedom. Before
delving into the basics of statistical mechanics, it is useful to have a few simple
systems in mind. We will use these to illustrate key ideas throughout the course.
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Figure 1: Statistical mechanics is a bridge between microscopic degrees-of-freedom
and macroscopic behaviour. Given a Hamiltonian H, statistical physics defines a
partition function Z from which thermodynamic (and hydrodynamic) properties
may be calculated.

Example: spin model

Let us take a system of N particles with spin %, such that the particles are fixed
in space. The only degree-of-freedom a particle has, let’s say, is to be aligned in
the +2z-direction. Let’s also assume an external magnetic field B points in the +z-
direction and the energy of a particle is e, = —uB if it is aligned with the magnetic
field and e = +puB if it is anti-aligned (u is the particle’s magnetic moment). The
net energy F of the system is simply the sum of the spins’ energies. Table 1 lists all

microstates for the N = 3 model along with the energies of each microstate.

Example: non-interacting quantum particles

Let us recall an example from Part IB Quantum Mechanics. This will be a very
useful one through our course. Consider the stationary states of a single particle
in a cubic box with periodic boundary conditions: V' = L? and U(x) = 0. The
stationary states are solutions to the time independent Schrodinger equation

B,
—5 -V = ey (1.2.1)

which we recall to be plane waves, labelled by a wave vector k

1 ik-x
Uk(x) = N (1.2.2)
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State index  state E
1 | +++) —3uB
2 |++—) —uB
3 |+—+) —uB
4 | —++) —uB
5 | — —+) uB
6 | —+-) uB
7 |+ ——) uB
8 | ———) 3uB

Table 1: Microstates for N = 3 spin model.

where |k| = v/2me/h. Periodic boundary conditions, ¥ (z; + L) = v (x;) imply the
allowed values of k; are discrete

2
k = %n, n = (ng,ny,n,). (1.2.3)

Single particle microstates can be labelled by the wave vector |k). Since this is
a noninteracting theory the N particle state is just the outer product of N single
particle microstates

i) = |kiks - ky) = ki) @1ks) @+ ® |ky) . (1.2.4)

Granted, most of us do not live in periodic boxes. Actually any boundary condi-
tions will yield a discrete spectrum: sinusoidal wavefunctions must have a discrete
number of nodes. We will see that it is easier to work with a discrete spectrum of
states and finite NV rather than an infinity of particles each of which has a continu-
ous energy spectrum. Usually at some point in the calculation we take the infinite
particle, infinite volume limit, holding the particle density fixed:

N
N — o0, V — o0, v fixed (1.2.5)

This limit is called the thermodynamic limit.

Example: classical gas

We will not discuss the classical Hamiltonian again until Chap. 10. Nevertheless it
is worth pointing out that classical statistical mechanics is logically well-formulated,
despite the empirical observation that experiments disagree with classical predictions
in the quantum regime, and a couple “paradoxes” can only be understood using
quantum mechanics.

The classical Hamiltonian of a gas of NV particles is a function of coordinates ¢,
and their conjugate momenta pg, both of which can be known in principle to arbitrary
accuracy. (s is an index which runs over the degrees-of-freedom. Noninteracting
structureless particles in 3-dimensions are described by 3N coordinates and 3N
momenta.) There are a continuous infinity of microstates represented by the phase
space spanned by the coordinates and conjugate momenta.
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Figure 2: Schematic depiction of (a) the microcanonical ensemble, (b) the canonical
ensemble, and (c) the grand canonical ensemble.

1.3 Ensembles and subsystems

Not all microstates will be accessible, or allowable in a given scenario. Suppose we
take the spin model described above and assert that we are studying the N = 3 spin
model which has £ = —pB. Then the only 3 allowable states labelled 2-4: | ++—),
|+ —+), and | — ++).

The set of allowable microstates under a particular circumstance is termed an en-
semble. Under different circumstances different ensembles are appropriate. There
are three ensembles we will consider:

e Microcanonical ensemble

In ensemble &g, the total energy E and number of particles NV is fixed. This
is appropriate for a truly isolated system.

e Canonical ensemble

Eck has N particles fixed, but E can fluctuate about a mean (E) due to
thermal contact with another system, sometimes called a heat bath.

e Grand canonical ensemble

In Eccg both E and N fluctuate about mean values (E) and (N). This is
appropriate when a heat bath is present, as well as something varying particle
number. For example, particle number is not conserved in thermal systems
where a chemical reaction is occurring in both directions, or in the early uni-
verse when electrons, positrons, and photons were all in equilibrium.

These three ensembles are depicted in Figure 2. Recalling the example of free
quantum particles in a periodic box, we can see the three ensembles correspond to
different allowed microstates (1.2.4). In the microcanonical ensemble, all the |7) have
N particles and only N — 1 values of |k| are unconstrained, the last constrained by
energy conservation. In the canonical ensemble, £ is not conserved so we have one
fewer constraint compared to the microcanonical ensemble. In the grand canonical
ensemble, N can fluctuate, and correspondingly so do the single particle states
contributing to |4).
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Figure 3: Describing different subsystems with different ensembles: System &4 is
thermally isolated from the outside environment and described by the microcanon-
ical ensemble. Subsystem Sp contains particles which can exchange energy with
those outside, but are confined within Sg, so the canonical ensemble is most rel-
evant. Subsystem S¢ is simply a volume within S through which energy and
particles can enter or leave, so the grand canonical ensemble applies.

Another way to view these three different ensembles is depicted in Figure 3. A
system S, described by the microcanonical ensemble is completely isolated from
any outside environment. A system Sp described by the canonical ensemble can be
thought of as a subsystem, in thermal contact with a larger subsystem with which
it can exchange small amounts of energy, but not permitting particles to move in
or out of the subsystem. An example use of the grand canonical ensemble would be
to describe a subvolume S¢ of an open container: particles and energy are free to
move in and out of the area.

The thermodynamic laws that emerge from the statistical mechanics of these
different ensembles are identical. This is because the fluctuations about ensem-
bles averages are so small. We will estimate the sizes of fluctuations throughout.
However, the different ensembles give us flexibility in carrying out the statistical
mechanics calculations, as we shall also see.

1.4 Equilibrium

Consider an isolated, or closed, system S. No heat enters or exit, and there are no
external forces. It is an empirical fact that after sufficient time, a steady state is
reached which is independent of the initial condition. This steady state is charac-
terised by a set of time-independent variables pressure, volume, temperature, en-
tropy, energy, and so on. This state is called equilibrium. Thermal equilibrium
specifically refers to a steady state with respect to heat transfer while chemical
equilibrium refers to a steady state with respect to particle composition.

1.5 Ergodic hypothesis

We must make a crucial hypothesis, that of ergodicity: a system S evolves through
all microstates belonging to the relevant ensemble eventually. That is, there is a
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mathematically nonzero probability that every microstate in the ensemble will be
realised if we wait long enough. The set of probabilities p;, where ¢ labels the
microstates, are independent of time for a system in equilibrium. In that case, it is
no longer necessary to consider the order in which the system visits the assortment
of microstates. We simply need to know these probabilities.

The consequence of making this hypothesis is a significant simplification. What
we mean by expectation value is really a time average. For some observable X, its
expectation value is defined to be

(X) = hm—/ X(t (1.5.1)

T—oo 1’

However, if we really needed to evaluate X (t) for this whole time, we would be in
trouble. We would need to solve the 10%3- body problem completely! The ergodic
hypothesis means that we do not need to worry about how the system evolves
in time. Since every microstate will eventually be visited, we can sum over all
microstates, weighted by the relative frequency with which that microstate will be
visited. That is, we can evaluate expectation values as ensemble averages, properly
weighted averages over microstates:

(X) = > (il X]i) o(E:) (1.5.2)
where p(E;) is a probability density which dictates which microstates are accessi-
ble, and how accessible. We will discuss later how we know p; = p(E;) is a function
of energy only.

To repeat, since each microstate must appear at some time in the infinity of
time, we can forget about the time history of the system and imagine an infinite set
of replicate systems.

1.6 Fundamental postulate
In order to derive the probability densities for different ensembles we begin with an
assumption, probably the most fundamental postulate of statistical mechanics

An isolated system in equilibrium is found in any of its accessible mi-
crostates with equal probability.

Note that this assumption is for a completely isolated system, so is relevant for the

microcanonical ensemble, but not the canonical or grand canonical ensembles.
For the microcanonical ensemble, where the system energy F is strictly conserved
Ex§(E—-E). (1.6.1)

All microstates which have F; = E are weighed equally, while those with E # E;
are excluded. The microcanonical ensemble is quite useful, but in this short course
we must move now to the more broadly useful canonical ensemble.

Further reading

D Lindley, Boltzmann’s Atom: the Great Debate that Launched a Revolution in
Physics, (The Free Press, 2001).



