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3 Thermodynamics from statistical mechanics

In thermodynamics we study changes from one equilibrium state to another. We
seek relationships between physical quantities of initial and final states only. We do
not try to describe the transition between equilibrium states

We consider 2 types of energy transfer here. The first is heat, Q, the disordered
energy transfer by random processes. The second is work, W , the ordered energy
transfer by an external force. Focusing on a system S, we will use the sign convention
that Q > 0 when heat is supplied to S and W > 0 when work is done on S.

3.1 Adiabatic processes

An adiabatic process is defined by the following conditions

1. Q = 0. No heat transfer to or from S.

2. The process is carried out only by external forces.

3. The process takes place arbitrarily slowly so that each intermediate state can
be considered to be an equilibrium state.

Quantum mechanically we can apply Ehrenfest’s principle, also known as the
adiabatic theorem, that transitions between quantum states are negligible if the
perturbations (changes in V ) are slow enough. That is, an adiabatic process is
one where we can assume a state which is in |i〉 will remain in |i〉 during the next
infinitesimal step of the process. (Of course the system will continue to explore the
allowed microstates by virtue of being a thermal system. The important point is
that the adiabatic process does not force the system into a different state.) In other
words, the occupation probabilities ρi do not change during an adiabatic process.
An adiabatic process is an example of a process which is both quasistatic, since it
proceeds so slowly that intermediate states are also equilibrium states, and which
is reversible, since the inverse process can be performed. Reversible processes are
quasistatic processes which have no hysteresis effects.

For example, take a gas in an insulated container with a movable piston whose
surface area is A (Fig. 4). Applying a force F, push the piston inward slowly,
adiabatically compressing the gas. The work done on the system is

d̄W = − F · dx = − PA dx = − P dV (3.1.1)

where P is the pressure (force/area) exerted on the piston (assume for simplicity
the force is normal to the piston’s surface, which we take to be planar). Note that
here d̄W > 0 since dV < 0. Clearly we can undo this process by pulling the piston
instead of pushing it. Therefore, the process is reversible. Note that we use a ’d̄’
to denote an infinitesimal amount of work or heat. Neither d̄W nor d̄Q are exact
differentials: the amount of work done or heat transferred depends on the specific
process undertaken. Since dV = −d̄W/P is an exact differential, we can consider
the pressure to be an integrating factor.

Given that the compression in our example above is slow enough to satisfy the
conditions of the adiabatic theorem, then the only microscopic change is due to the
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Figure 4: A gas at pressure P occupies volume V inside an insulated container. A
piston can be moved to carry out adiabatic changes.

volume dependence of the energies of the microstates. For an infinitesimal step in
the process, the change in energy for microstate |i〉 will be

dEi =
∂Ei

∂V
dV . (3.1.2)

Furthermore, the statement of the adiabatic theorem means that the occupation
probabilities ρi do not change during an adiabatic process, i.e. that dρi = 0. Changes
in the Ei are compensated by a change in the temperature. Thus, the work done
on the system changes the total average energy (denoted by E, dropping the 〈·〉
notation for convenience) is

dE = d̄W by energy conservation (3.1.3)

d
( ∑

i

ρiEi

)
= − P dV (3.1.4)

∑
i

ρi
∂Ei

∂V
dV = − P dV (adiabatic ⇒ ∂ρi

∂V
= 0) (3.1.5)

which implies

P = −
∑

i

ρi
∂Ei

∂V
. (3.1.6)

Let us again consider the example of a noninteracting gas in a box with periodic
boundary conditions. The single-particle energies are labelled by the wave vector k
(see Eq. 1.2.3) and depend on volume as

εk =
~2|k|2
2m

=
4~2π2|n|2

2mL2
∝ V −2/3 . (3.1.7)

Therefore the total energy of the many particle state, just the sum of all the single
particle states times the number of particles in that state Ei =

∑
k n

(i)
k εk, has the

same volume dependence
∂Ei

∂V
= − 2

3

Ei

V
(3.1.8)

and hence the pressure is

P =
2

3V

∑
i

ρiEi =
2

3

E

V
= − ∂E

∂V
. (3.1.9)
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We see that knowing the quantum mechanical Hamiltonian at the particle level
allows us to determine the thermodynamic relation between pressure and energy in
a macroscopic gas of these particles.

3.2 Entropy

Next we consider processes where heat is transferred. Once we go beyond adiabatic
processes, the occupation probabilities for microstates, i.e. the statistical distribu-
tion, is no longer constant: dρi 6= 0. Therefore

dE =
∑

i

(Ei dρi + ρi dEi) . (3.2.1)

Let us define entropy in the language of the canonical ensemble (Chapter 2)

S =
k

A
log W ({a}) (3.2.2)

where k is Boltzmann’s constant,2 A is the number of replicas in an ensemble, {a} is
an enumeration of microstates, and W ({a}) is the number of arrangements of that
enumeration. Inserting the expression for W ({a}) (2.1.10) we find

S =
k

A

(
A log A −

∑
i

ai log ai

)
(3.2.3)

Since

∑
i

ai log ai =
∑

i

Aρi log(Aρi)

= A
∑

i

ρi (log A + log ρi)

= A log A + A
∑

i

ρi log ρi . (3.2.4)

In the last step we used the fact that probabilities must sum to 1:
∑

i ρi = 1. Then
we find

S = − k
∑

i

ρi log ρi . (3.2.5)

Now consider a quasistatic process which includes transfer of heat. Inserting the
Boltzmann distribution

ρi(V, T ) =
1

Z(V, T )
e−βEi(V ) (3.2.6)

2Equation (3.2.5) is on Boltzmann’s headstone. His work was not widely accepted until after
his death. His body was reburied several years after his death, with the new headstone reflecting
his contribution to theoretical physics.
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we find an infinitesimal step in the process changes the entropy by

dS = −k
∑

i

dρi(log ρi + 1)

= −k
∑

i

dρi(−βEi − log Z + 1)

=
1

T

∑
i

Ei dρi (3.2.7)

In the last step, we used the conservation of probability which implies
∑

i dρi = 0,
the fluctuation in total probability must be zero. Inserting the right hand side of
(3.2.7) into (3.2.1) we find

dE = T dS − P dV . (3.2.8)

Equation (3.2.8) is a useful form of the first law of thermodynamics. The general
form of the law is

dE = d̄Q + d̄W . (3.2.9)

For reversible processes, where e.g. no energy is lost to friction and no free expansion
occurs, then

Reversible ⇒ d̄Q = TdS d̄W = − P dV (3.2.10)

otherwise

Irreversible ⇒ d̄Q < TdS d̄W > − P dV . (3.2.11)

Note also, that for adiabatic processes where d̄Q = 0, that dS = 0.

3.3 Thermodynamic potentials

From (3.2.8) we see that the average energy E is naturally a function which treats S
and V as the independent variables. The other thermodynamic variables, P and T
are then treated as functions of S and V and can be computed if E(S, V ) is known

T =
∂E

∂S

∣∣∣∣
V

and P = − ∂E

∂V

∣∣∣∣
S

. (3.3.1)

In addition to the average system energy E, we can construct other thermodynamic
potentials, which might be useful in various contexts as they naturally depend on
different thermodynamic variables.

Note that we can write the entropy as

S = −k
∑

i

ρi log ρi

= −k
∑

i

ρi(−βEi − log Z)

=
E

T
+ k log Z . (3.3.2)
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Figure 5: “Very Fine Teachers Enjoy Giving Some Hard Problems.” Mnemonic for
remembering the equations (3.2.8), (3.3.4), (3.3.7) and (3.3.9). The thermodynamic
potentials are in bold, adjacent to their corresponding independent variables. The
arrows connect combinations of variables, the direction of the arrow indicates the
sign.

Now let us define the (Helmholtz) free energy3 F by

F = − kT log Z = E − TS (3.3.3)

so that
dF = dE − TdS − SdT = − SdT − P dV . (3.3.4)

In (3.3.3) we have performed a Legendre transform from E(S, V ) to F (T, V ). The
free energy is also useful in statistical mechanics, since the partition function can be
written

Z = e−βF . (3.3.5)

There are 2 more potentials we can define. The Gibbs free energy4 is

G = E − TS + PV (3.3.6)

which implies
dG = − SdT + V dP . (3.3.7)

The enthalpy is
H = E + PV (3.3.8)

which implies
dH = TdS + V dP . (3.3.9)

Aside on Legendre transformations

Recall from classical mechanics the transformation from Lagrangian to Hamiltonian

H(q, p) = p q̇ − L(q, q̇) (3.3.10)

3The phrase “the free energy,” one usually refers to this quantity. It is sometimes denoted by
A instead of F . Incidentally, some texts use U for the system energy and sometimes refer to it as
the internal energy.

4Landau & Lifshitz use Φ for the Gibbs free energy
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L(v)

p

−H(p)

v

Figure 6: Legendre transform. A curve can be described by the set of points (v, L(v))
or by the envelope of a set of slopes and intercepts (p,−H(p)).

which exchanges the velocity v = q̇ for the momentum p as the independent variable.
We can describe the the curve defined by the set of points (v,L(v)). Recall that
momentum is the slope of the Lagrangian in the v direction

p =
∂L

∂v
(3.3.11)

The same curve can be defined by the envelope of a set of tangents, i.e. slopes and
intercepts (p,−H(p)).

3.4 Extensive and intensive quantities

We introduce some terminology for quantities based on their scaling behaviour. Let
us imagine replicating system S1 which is in thermodynamic equilibrium, and calling
the copy S2. Each have the same P, V, T,N by construction. Now join them together,
so that the joint system S12 is a scaled-up version of the original. We consider how
thermodynamic quantities differ between the original and scaled systems. Clearly
the volume and particle number has doubled (V12 = V1 + V2 and N12 = N1 + N2),
while the pressure and temperature remain the same. Quantities that scale with the
volume under these types of scale transformations are called extensive. Quantities
that remain unchanged under scale transformations are called intensive.
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For a weakly interacting or noninteracting system, joining S2 with S1 will not
change the occupation probabilities: the probability of a particle 1 having Ei in S12

and particle 2 having Ej in S12 is the product of probabilities: of particle 1 having
energy Ei in S1 and particle 2 having energy Ej in S2. We should assume that V is
large enough that doubling the volume does not greatly effect the energy spectrum,
e.g. we are near the thermodynamic limit. Then,

Z12 = Z1 Z2 . (3.4.1)

This means that the free energy is extensive:

e−βF12 = e−βF1e−βF2 = e−β(F1+F2) . (3.4.2)

Since −βF =
∑

i ρiEi, the average energy must also be extensive: E12 = E1 + E2.
Looking at the definition of free energy (3.3.3), we can see that the entropy is
extensive

S12 − S1 − S2 =
1

T
[E12 − F12 − (E1 − F1)− (E2 − F2)] = 0 . (3.4.3)

All of the four thermodynamic potentials E, F , G, and H have been shown to be
extensive. G(P, T ) is special. It is the only one which is a function of the 2 intensive
variables (see (3.3.6) and (3.3.7)). Therefore, we can factor out from the coefficients
of P and T a common factor of N

G(P, T ) = µ(P, T ) N . (3.4.4)

The quantity µ(P, T ) is an intensive function, called the chemical potential. We
will discuss this more later in Chapter 6.

3.5 Additivity of entropies

The discussion in the previous section relied on scaling a system in thermodynamic
equilibrium. The additivity of entropies can be proved without relying on the par-
tition function, which only makes sense in equilibrium.

Let ρi be the statistical distribution for system S1 and σj be the statistical
distribution for system S2. The statistical distribution for the joint system S12 is
the product ρiσj. Therefore, the total entropy can be written as

S12 = −k
∑
ij

ρiσj log(ρiσj) (3.5.1)

= −k
∑
ij

ρiσj(log ρi + log σj)

= −k

[(∑
j

σj

) ∑
i

ρi log ρi +

(∑
i

ρi

)∑
j

σj log σj

]

= S1 + S2 . (3.5.2)

In the last step, we used the fact that the terms in parentheses, sums of probabilities
are equal to 1. We see that the entropy of the joint system is just the sum of entropies
of the individual systems.
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This avoids discussion about equilibrium vs. nonequilibrium states. The en-
tropies are additive even if ρi and σj are not the ones obtained by maximising W
(equivalently, maximising the entropy).

Further reading

1. F Mandl, Statistical Physics, (Wiley & Sons, 1988), Chapters 1, 2 & 4.


