Example Sheet 1

1. The four dimensional 4×4 Dirac matrices are defined uniquely up to an equivalence by $\left\{\gamma^{\mu}, \gamma^{\nu}\right\}=2 g^{\mu \nu} 1$, with 1 the unit matrix. We may also require that if $\gamma^{\mu}=\left(\gamma^{0}, \gamma\right)$ then $\gamma^{\mu \dagger}=\left(\gamma^{0},-\gamma\right)$. If $\left[X, \gamma^{\mu}\right]=0$ for all μ then $X \propto 1$ and if $\gamma^{\mu}, \gamma^{\mu}$ both obey the Dirac algebra then $\gamma^{\prime \mu}=S \gamma^{\mu} S^{-1}$ for some S. Define the charge conjugation matrix C by $C \gamma^{\mu T} C^{-1}=-\gamma^{\mu}$, where T denotes the matrix transpose. Show that $\left[C^{T} C^{-1}, \gamma^{\mu}\right]=0$ and hence that $C^{T}=c C, c= \pm 1$. Derive the results

$$
\begin{aligned}
\left(\gamma^{\mu} C\right)^{T}=-c \gamma^{\mu} C, & \left(\gamma^{5} C\right)^{T}=c \gamma^{5} C \\
\left(\gamma^{\mu} \gamma^{5} C\right)^{T}=c \gamma^{\mu} \gamma^{5} C, & \left(\left[\gamma^{\mu}, \gamma^{\nu}\right] C\right)^{T}=-c\left[\gamma^{\mu}, \gamma^{\nu}\right] C
\end{aligned}
$$

Hence, since there are 6 independent antisymmetric and 10 symmetric 4×4 matrices, show that we must take $c=-1$.
Using the assumed hermeticity properties of the Dirac matrices, show $\left[\gamma^{\mu}, C C^{\dagger}\right]=0$ so that we may take $C C^{\dagger}=1$.
The matrix B is defined by $B \gamma^{\mu *} B^{-1}=\left(\gamma^{0},-\gamma\right)$. Show that $B \gamma^{5 *} B^{-1}=\gamma^{5}$. With the assumed form for $\gamma^{\mu \dagger}$ verify that we may take $B= \pm \gamma^{5} C$.
*Generalise the above argument for finding c to $2 n$ dimensions when the Dirac matrices are $2^{n} \times 2^{n}$ and we may take as a linearly independent basis 1 and $\gamma^{\mu_{1} \ldots \mu_{r}}=$ $\gamma^{\left[\mu_{1}\right.} \ldots \gamma^{\left.\mu_{r}\right]}$, where [] denotes antisymmetrisation of indices, for $r=1, \ldots 2 n\left(\gamma^{\mu_{1} \ldots \mu_{r}}\right.$ has $\binom{2 n}{r}$ independent components). Show that $C\left(\gamma^{\mu_{1} \ldots \mu_{r}}\right)^{T} C^{-1}=(-1)^{\frac{1}{2} r(r+1)} \gamma^{\mu_{1} \ldots \mu_{r}}$ and hence $c=(-1)^{\frac{1}{2} n(n+1)}$. Generalise γ^{5} by taking $\hat{\gamma}=i^{n-1} \gamma^{0} \gamma^{1} \ldots \gamma^{2 n-1}$ and show that $\hat{\gamma}$ is hermitian and $\hat{\gamma}^{2}=1$. Show that

$$
\psi^{c}=C \bar{\psi}^{T}, \quad \psi^{\prime}=\hat{\gamma} \psi \Rightarrow \psi=-c C \bar{\psi}^{c T}, \quad \psi^{\prime c}=-(-1)^{n} \hat{\gamma} \psi^{c} .
$$

In what dimensions is possible to have Majorana-Weyl spinors, so that $\psi^{c}= \pm \psi^{\prime}=$ ψ ?
2. A Dirac quantum field transforms under parity so that

$$
\hat{P} \psi(x) \hat{P}^{-1}=\gamma^{0} \psi\left(x_{P}\right), \quad x_{P}^{\mu}=\left(x^{0},-\mathbf{x}\right)
$$

and has an interaction with a scalar field $\phi(x)$

$$
\mathcal{L}_{I}(x)=g \bar{\psi}(x) \psi(x) \phi(x)+g^{\prime} \bar{\psi}(x) i \gamma^{5} \psi(x) \phi(x) .
$$

Obtain the necessary form for $\hat{P} \phi(x) \hat{P}^{-1}$ to ensure that the theory is invariant under parity if $g^{\prime}=0$. What are the transformation properties of $\phi(x)$ for parity invariance when $g=0$? Can parity be conserved in a theory if both g, g^{\prime} are non zero?
How does the axial current $j_{5}^{\mu}(x)=\bar{\psi}(x) \gamma^{\mu} \gamma^{5} \psi(x)$ transform under parity?
3. For a free operator Dirac field $\hat{\psi}(x)$ assume $\hat{\psi}(x)=\sum_{r} a_{r} \psi_{r}(x)$ where $\left\{\psi_{r}(x)\right\}$ forms a basis for solutions of the Dirac equation and a_{r} are operators. Explain why a basis may be chosen so that $B \psi_{r}^{*}(x)=\psi_{r^{\prime}}\left(x_{T}\right)$ where $x_{T}^{\mu}=\left(-x^{0}, \mathbf{x}\right)$ and $B \gamma^{\mu *} B^{-1}=$ $\left(\gamma^{0},-\gamma\right)$. Assume the time reversal operator is defined so that $\hat{T} a_{r} \hat{T}^{-1}=a_{r^{\prime}}$. What is $\hat{T} \hat{\psi}(x) \hat{T}^{-1}$?
4. Under charge conjugation and time reversal a Dirac field ψ transforms as

$$
\hat{C} \psi(x) \hat{C}^{-1}=C \bar{\psi}^{T}(x), \quad \hat{T} \psi(x) \hat{T}^{-1}=B \psi\left(x_{T}\right), \quad x_{T}^{\mu}=\left(-x^{0}, \mathbf{x}\right) .
$$

with \hat{C}, \hat{T} the unitary, anti-unitary operators implementing these operations (note, if $\hat{T}|\phi\rangle=\left|\phi_{T}\right\rangle$ then $\left\langle\phi^{\prime} \mid \phi\right\rangle=\left\langle\phi_{T} \mid \phi_{T}^{\prime}\right\rangle$). The matrices C, B are defined in question 1; also note $C^{\dagger} C=B^{\dagger} B=1$. Show that, if X is matrix acting on Dirac spinors,

$$
\hat{C} \bar{\psi}(x) X \psi(x) \hat{C}^{-1}=\bar{\psi}(x) X_{C} \psi(x), \quad \hat{T} \bar{\psi}(x) X \psi(x) \hat{T}^{-1}=\bar{\psi}\left(x_{T}\right) X_{T} \psi\left(x_{T}\right),
$$

where $X_{C}=C X^{T} C^{-1}$ (take ψ and $\bar{\psi}$ to anti-commute) and $X_{T}=B X^{*} B^{-1}$. Hence determine the transformation properties under charge conjugation and time reversal of

$$
\bar{\psi}(x) \psi(x), \quad \bar{\psi}(x) i \gamma^{5} \psi(x), \quad \bar{\psi}(x) \gamma^{\mu} \gamma^{5} \psi(x)
$$

If $|\pi\rangle$ is a boson with momentum p and $\langle 0| \bar{\psi}(0) i \gamma^{5} \psi(0)|\pi(p)\rangle \neq 0$ show that, in a theory in which P and C are conserved, then the boson must have negative intrinsic parity and also positive charge conjugation parity.
5. From Maxwell's equation $\partial_{\nu} F^{\mu \nu}=e \bar{\psi} \gamma^{\mu} \psi, F_{\mu \nu}=\partial_{\mu} A_{\nu}-\partial_{\nu} A_{\mu}$ derive the required transformation properties of $A_{\mu}(x)$ to ensure invariance under parity, charge conjugation and time reversal. Show that $\int d^{4} x \epsilon^{\mu \nu \sigma \rho} F_{\mu \nu} F_{\sigma \rho}$ is odd under both P and T.
6. For a Dirac field ψ define $\psi_{ \pm}=\frac{1}{2}\left(1 \pm \gamma^{5}\right) \psi$. Show that $\bar{\psi}_{ \pm} \gamma^{5}=\mp \bar{\psi}_{ \pm}$. Let $\Psi_{ \pm}=$ $\binom{\psi_{ \pm}}{C \bar{\psi}_{\mp}^{T}}$ and show that then $\bar{\Psi}_{ \pm}=\left(\bar{\psi}_{ \pm},-\psi_{\mp}^{T} C^{-1}\right)$. [Hint: it is easier to keep the new 2-dimensional "super-spin" space separate from the 4-dimensional spinor space of ψ.] A generalized Lorentz-invariant mass term can be written as

$$
\mathcal{L}_{m}=\frac{1}{2} \Psi_{+}^{T} C^{-1} \mathcal{M} \Psi_{+}-\frac{1}{2} \bar{\Psi}_{+} \mathcal{M}^{*} C \bar{\Psi}_{+}^{T}
$$

where \mathcal{M} is a symmetric 2×2 matrix which communtes with C and γ^{μ}. [The notation can be confusing, but it is convensional. You can read the matrices more explicitly as $\mathbb{1}_{4} \otimes \mathcal{M}, C \otimes \mathbb{1}_{2}$ and $\left.\gamma^{\mu} \otimes \mathbb{1}_{2}\right]$. Verify that $\mathcal{L}_{m}^{\dagger}=\mathcal{L}_{m}$. If $\mathcal{M}=\left(\begin{array}{cc}0 & m \\ m & 0\end{array}\right)$ show that by absorbing any phase into $\psi_{ \pm}$we can take m real and positive, and that this reduces to the conventional Dirac mass term $\mathcal{L}_{m}=-m \bar{\psi} \psi$. Show that the kinitic term $\mathcal{L}_{K}=\bar{\psi} i \not \partial \psi=\bar{\Psi}_{+} i \not \partial \Psi_{+}$. Regarding Ψ_{+}and $\bar{\Psi}_{+}$as independent and assuming $\mathcal{L}=\mathcal{L}_{K}+\mathcal{L}_{m}$ derive the equations

$$
i \not \supset \Psi_{+}-\mathcal{M}^{*} C \bar{\Psi}_{+}^{T}=0, \quad i \not \partial C \bar{\Psi}_{+}^{T}-\mathcal{M} \Psi_{+}=0
$$

and hence that the mass-squared eigenvalues are found by solving $\operatorname{det}\left(p^{2} 1-\mathcal{M}^{*} \mathcal{M}\right)=$ 0.

Requiring $\hat{T} \psi(x) \hat{T}^{-1}=B \psi\left(x_{T}\right)$ and $\hat{T} \bar{\psi}(x) \hat{T}^{-1}=\bar{\psi}\left(x_{T}\right) B^{-1}$, with $B=\gamma^{5} C$ as in question 1, show that $\hat{T} \Psi_{+}(x) \hat{T}^{-1}=B \Psi_{+}\left(x_{T}\right)$. Hence demonstrate that \mathcal{M} should be real in order to have $\hat{T} \mathcal{L}_{m}(x) \hat{T}^{-1}=\mathcal{L}_{m}\left(x_{T}\right)$.
If $\mathcal{M}=\left(\begin{array}{cc}0 & m \\ m & M\end{array}\right)$ with m real and positive and $|M| \gg m$, show that the masses are approximately $|M|$ and $m^{2} /|M|$.

