Example Sheet 3

1. The Lagrangian density for the Weinberg-Salam theory with gauge fields $\mathbf{W}_{\mu}, B_{\mu}$, a complex scalar field ϕ and fermion fields ψ may be written as

$$
\begin{aligned}
\mathcal{L}= & -\frac{1}{4} \mathbf{F}^{\mu \nu} \cdot \mathbf{F}_{\mu \nu}-\frac{1}{4} B^{\mu \nu} B_{\mu \nu}+\left(D^{\mu} \phi\right)^{\dagger} D_{\mu} \phi-\frac{1}{4} \lambda\left(\phi^{\dagger} \phi-\frac{1}{2} v^{2}\right)^{2}+\bar{\psi} i \gamma^{\mu} D_{\mu} \psi, \\
& -\left(\bar{\psi} \Gamma_{2} \phi \frac{1}{2}\left(1+\gamma^{5}\right) \psi_{2}+\bar{\psi} \Gamma_{1} \phi^{c} \frac{1}{2}\left(1+\gamma^{5}\right) \psi_{1}+\text { hermitian conjugate }\right)
\end{aligned}
$$

where $\boldsymbol{\sigma}$ are the usual Pauli matrices, Γ_{1} and Γ_{2} are Yukawa couplings, and

$$
\begin{gathered}
\mathbf{F}_{\mu \nu}=\partial_{\mu} \mathbf{W}_{\nu}-\partial_{\nu} \mathbf{W}_{\mu}-g \mathbf{W}_{\mu} \times \mathbf{W}_{\nu}, \quad B_{\mu \nu}=\partial_{\mu} B_{\nu}-\partial_{\nu} B_{\mu} \\
\psi=\binom{\psi_{1}}{\psi_{2}}, \quad \phi=\binom{\phi_{1}}{\phi_{2}}, \quad \phi^{c}=i \sigma_{2} \phi^{*}, \quad D_{\mu} \phi=\partial_{\mu} \phi+i\left(g \mathbf{W}_{\mu} \cdot \frac{1}{2} \boldsymbol{\sigma}+g^{\prime} B_{\mu} Y\right) \phi \\
D_{\mu} \psi=\partial_{\mu} \psi+i\left(g \mathbf{W}_{\mu} \cdot \frac{1}{2} \boldsymbol{\sigma}+g^{\prime} B_{\mu} y\right) \frac{1}{2}\left(1-\gamma^{5}\right) \psi+i g^{\prime} B_{\mu}\left(y+Y \sigma_{3}\right) \frac{1}{2}\left(1+\gamma^{5}\right) \psi
\end{gathered}
$$

Identify the gauge group of \mathcal{L} and show how each term in \mathcal{L} is gauge invariant (note that Y only enters in the product $g^{\prime} Y$ so that its value is essentially arbitrary). Show that a mass term for the gauge fields of the form

$$
m_{W}^{2} W^{\mu \dagger} W_{\mu}+\frac{1}{2} m_{Z}^{2} Z^{\mu} Z_{\mu}
$$

is produced where $W_{\mu}=\frac{1}{\sqrt{2}}\left(W_{1 \mu}-i W_{2 \mu}\right)$ and $Z_{\mu}=\cos \theta_{W} W_{3 \mu}-\sin \theta_{W} B_{\mu}$ for a suitable choice of the angle θ_{W}. How is m_{Z} / m_{W} related to θ_{W} ? Explain why it is impossible to introduce mass terms for the fermion fields into \mathcal{L} compatible with gauge invariance. What are the fermion charges which give the coupling to the photon?
2. Show that the decay rate of a Higgs boson to a $\ell \bar{\ell}$ pair is given by

$$
\Gamma_{H \rightarrow \ell \bar{\ell}}=\frac{G_{F}}{\sqrt{2}} \frac{1}{4 \pi} \frac{m_{\ell}^{2}}{m_{H}^{2}}\left(m_{H}^{2}-4 m_{\ell}^{2}\right)^{\frac{3}{2}},
$$

assuming $m_{H}>2 m_{\ell}$.
3. For two generations of quarks with masses $m_{d}, m_{s}, m_{u}, m_{c}$, suppose the Lagrangian contains mass terms is given by $\mathcal{L}_{m}=-\left(\bar{q}_{+} m_{+} \frac{1}{2}\left(1+\gamma_{5}\right) q_{+}+\bar{q}_{-} m_{-} \frac{1}{2}\left(1+\gamma_{5}\right) q_{-}+\right.$h.c. $)$ with

$$
q_{+}=\binom{u^{\prime}}{c^{\prime}}, \quad q_{-}=\binom{d^{\prime}}{s^{\prime}}, \quad m_{+}=\left(\begin{array}{cc}
0 & a \\
a^{*} & b
\end{array}\right), \quad m_{-}=\left(\begin{array}{cc}
0 & c \\
c^{*} & d
\end{array}\right), \quad(b, d \text { real })
$$

where $u^{\prime}, d^{\prime}, c^{\prime}, s^{\prime}$ are quark fields (the prime indicates they diagonalize the weak charged current interaction). Given $R(\theta)=\left(\begin{array}{cc}\cos \theta & \sin \theta \\ -\sin \theta & \cos \theta\end{array}\right)$, define θ_{+}by

$$
R\left(\theta_{+}\right)\left(\begin{array}{cc}
0 & |a| \\
|a| & b
\end{array}\right) R\left(\theta_{+}\right)^{-1}=\left(\begin{array}{cc}
m_{u} & 0 \\
0 & -m_{c}
\end{array}\right)
$$

and define θ_{-}similarly for m_{s} and m_{d}. Show that after suitable rephasing of quark fields, one can use R to diagonalize $m_{ \pm}$. Hence, from the mixing matrix so-generated in the quarks' weak charged-current interactions, show that the Cabbibo angle in this case is given by

$$
\theta_{C}=\theta_{-}-\theta_{+}=\tan ^{-1} \sqrt{\frac{m_{d}}{m_{s}}}-\tan ^{-1} \sqrt{\frac{m_{u}}{m_{c}}}
$$

4. In the μ decay process,

$$
\mu^{-}(p) \rightarrow e^{-}(k)+\bar{\nu}_{e}(q)+\nu_{\mu}\left(q^{\prime}\right),
$$

suppose the initial μ is polarised. The spin polarisation may be represented by a 4 -vector s^{μ}, with $s \cdot p=0$, where in the muon rest frame $s^{\mu}=(0, \mathbf{s})$, and the corresponding Dirac spinor then satisfies $u_{\mu}(p) \bar{u}_{\mu}(p)=\left(\gamma \cdot p+m_{\mu}\right) \frac{1}{2}\left(1+\gamma^{5} \gamma \cdot s\right)$. Show that if \mathcal{M} is the matrix element of $\mathcal{L}_{W}(0)$ for this process then

$$
\sum_{\text {spins } e, \bar{\nu}_{e}, \nu_{\mu}}|\mathcal{M}|^{2}=64 G_{F}^{2} q^{\prime} \cdot k q \cdot\left(p-m_{\mu} s\right)
$$

Hence obtain, neglecting the electron mass, for the differential decay rate in the μ rest frame for the final electron of energy E_{e} emitted into a solid angle $\mathrm{d} \Omega(\hat{\mathbf{k}})$ about the direction $\hat{\mathbf{k}}$

$$
\mathrm{d} \Gamma=\frac{G_{F}^{2} m_{\mu}^{5}}{24(2 \pi)^{4}} x^{2}(3-2 x+(2 x-1) \hat{\mathbf{k}} \cdot \mathbf{s}) \mathrm{d} x \mathrm{~d} \Omega(\hat{\mathbf{k}})
$$

where $x=2 E_{e} / m_{\mu}, 0 \leq x \leq 1$. Explain why this decay distribution is a direct indication of the breakdown of parity invariance.
5. If $A_{\alpha}(x)$ is $\Delta S=\Delta Q=1$ weak hadronic current then the kaon decay constant F_{K} is defined by

$$
\langle 0| A_{\alpha}(0)\left|K^{-}(p)\right\rangle=i \sqrt{2} F_{K} p_{\alpha}
$$

Use the theory of weak decays to show the decay rate for a kaon decaying to a muon and antineutrino is

$$
\Gamma_{K^{-} \rightarrow \mu^{-}+\bar{\nu}_{\mu}}=\frac{G_{F}^{2} F_{K}^{2} \sin ^{2} \theta_{C}}{4 \pi} m_{\mu}^{2} m_{K}\left(1-\frac{m_{\mu}^{2}}{m_{K}^{2}}\right)^{2}
$$

6. Show that the interaction of the Z boson with a lepton field ℓ can be written as

$$
\mathcal{L}_{I}=\frac{g}{2 \cos \theta_{W}} \bar{\ell} \gamma^{\mu}\left(v-a \gamma^{5}\right) \ell Z_{\mu},
$$

where for the electron $v=2 \sin ^{2} \theta_{W}-\frac{1}{2}, a=-\frac{1}{2}$ while for ν_{e} then $v=a=\frac{1}{2}$. Calculate the decay rate $\Gamma_{Z \rightarrow \bar{\ell}}$ neglecting the lepton mass.
7. Show that including the Z as well as the photon the differential cross section for $e^{-} e^{+} \rightarrow \ell \bar{\ell}$ where $\ell=e, \mu, \tau$ has the form, neglecting lepton masses,

$$
\frac{\mathrm{d} \sigma}{\mathrm{~d} \Omega}=\frac{\alpha^{2}}{4 q^{2}}\left\{\left(1+\cos ^{2} \theta\right)\left(1+2 v^{2} D+\left(v^{2}+a^{2}\right)^{2} D^{2}\right)+4 \cos \theta\left(2 a^{2} D+v^{2} a^{2} D^{2}\right)\right\}
$$ where $v=2 \sin ^{2} \theta_{W}-\frac{1}{2}, a=-\frac{1}{2}$ and $D=\frac{G_{F}}{\sqrt{2}} \frac{m_{Z}^{2}}{q^{2}-m_{Z}^{2}} / \frac{2 \pi \alpha}{q^{2}}$. [The differential cross section here is the cross section per unit solid angle, $\mathrm{d} \Omega=\sin \theta \mathrm{d} \theta \mathrm{d} \phi$.] For $q^{2} \approx m_{Z}^{2}$ the total cross section behaves like

$$
\sigma_{e^{-} e^{+} \rightarrow \ell \bar{\ell}} \sim 12 \pi \frac{\Gamma_{Z \rightarrow e^{-}+e} \Gamma_{Z \rightarrow \bar{\ell}}}{\left(q^{2}-m_{Z}^{2}\right)^{2}+m_{Z}^{2} \Gamma^{2}},
$$

where Γ is the total decay width. Show that the formula for the differential cross section is compatible with the result for $\Gamma_{Z \rightarrow \ell \bar{\ell}}$.

