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Introduction

Quantum field theory was developed in order to describe natural
phenomena that are both relativistic and quantum. The prototype,
quantum electrodynamics (QED), described the physics of electrons
and photons. Since then, the quantum field theory framework has
been found to be rich, forcing on us constraints which allow firm
theoretical predictions (e.g. the charm quark) yet allowing the de-
scription of a wide range of physical phenomena. Ideas such as
renormalization carry over to the theory of critical phenomena.
Ongoing research is exploring dualities between field theories and
gravity theories (gauge-gravity dualities, of which AdS/CFT corre-
spondence is one).

The Standard Model is the most successful application of quan-
tum field theory when it comes to experimental verification. Over
the four decades since its ingredients were combined thousands of
measurements have been made, all apparantly consistent with the
Standard Model. Even the physics of quark flavour-changing inter-
actions, which could be sensitive through quantum loops to new
particles as heavy as 105 TeV/c2, is well-described by the Standard
Model.

Table 1.1: Standard Model bosons

electromagnetic γ
weak W±, Z0

strong g
higgs h

The Standard Model describes the physics of three fundamental
forces, each mediated by gauge bosons. The electromagnetic force
is described as electrically charged particles exchanging photons, as
in QED. The weak force is responsible for particles changing their
“flavour” as occurs in neutron β-decay. The W boson is responsible
for weak decays; its large mass is the reason for the weakness of
this force. (The Z boson also carries the weak force, but does not
cause a change in flavour.) The strong force binds quarks into nu-
cleons and nucleons into nuclei; the carrier of the strong force is
appropriately called the gluon.

Table 1.2: Standard Model fermions

leptons
(

νe
e

)
,
(

νµ

µ

)
,
(

ντ

τ

)
quarks

(
u
d

)
,
(

c
s

)
,
(

t
b

)
The matter content (the fermions) of the Standard Model are

the neutral leptons (the neutrinos), which feel only the weak force;
the charged leptons, like the electron which interact weakly and
electromagnetically; and the quarks, which are sensitive to all 3

forces.
Finally there is the Higgs boson, a consequence of the Higgs

mechanism for generating masses for the W and Z, as well as for
the fermions. In 2012 we saw convincing evidence that the Higgs
boson, or a Higgs-like boson, has been discovered at the LHC.

As in QED, the gauge bosons are manifestations of local symme-
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tries. The standard model gauge group is the direct product of the
3 Lie groups

SU(3)C × SU(2)L ×U(1)Y .

The electroweak theory is described by the product of the chiral
gauge theory SU(2)-left times U(1)-hypercharge. The separate
weak and electromagnetic forces we observe are due to the spon-
taneous breaking of this symmetry down to just U(1)EM. The next
lectures will gradually explain the details of what is written above.

SU(3)-colour describes the strong force (this part of the theory
is called quantum chromodynamics or QCD).1 We shall not discuss 1 Do not confuse the SU(3)-colour

gauge symmetry with the SU(3)-
flavour global symmetry which gives
approximate relations between bound
states of u, d, and s quarks.

QCD much until later in the course. The strong interactions make
for rich but complicated behaviour, difficult to study theoretically.
In the first half of this course, we shall focus on the electroweak sec-
tor of the Standard Model. The strong sector of the Standard Model
is fascinating for its richness, the electroweak sector is intriguing
because of its persistent mysteries.

There are many useful sources of relevant information. Prof
Osborn has lecture notes2 for the version of this course he gave 2 www.damtp.cam.ac.uk/user/ho/SM.ps

a few years ago. I will mostly follow the conventions used in
Prof Tong’s notes for Part III Quantum Field Theory.3 (For ex- 3 www.damtp.cam.ac.uk/user/tong/qft.html

ample, I will mostly use the chiral representation of the Dirac
matrices instead of the nonrelativistic, or Bjorken-Drell, repre-
sentation.) Romão & Silva4 have recently performed a service 4 J C Romão and J P Silva. A resource

for signs and Feynman diagrams of
the Standard Model. Int. J. Mod. Phys.,
A27:1230025, 2012. arXiv:1209.6213

to the community by carefully noting the various sign conven-
sions which appear in texts and reviews. These notes shall (when
I’m finished editing) consistently use the convension such that
η = ηs = η′ = ηZ = ηθ = ηY = ηe = +1. I find the QFT text
by Peskin & Schroeder5 to be a good reference on many topic cov- 5 M E Peskin and D V Schroeder. An

Introduction to Quantum Field Theory.
Addison Wesley, 1995. ISBN 0-201-
50397-2

ered in this course; however, be aware that they differ with the sign
convensions here by using η = ηs = η′ = −1 – in past years I
followed their convensions (in most places). The book by Halzen &
Martin6 is pitched at readers unfamiliar with QFT, but it contains 6 F Halzen and A D Martin. Quarks

and Leptons. Wiley & Sons, 1984. ISBN
0-471-88741-2

physically-motivated discussions and arguments which comple-
ment the more field theoretic treatments.

These notes appear online, with updates and additions appear-
ing as I edit them.7 The notes and the webpage will cite other ref- 7 www.damtp.cam.ac.uk/user/wingate/StdM

erences if they are particularly helpful with respect to a particular
topic.

http://www.damtp.cam.ac.uk/user/ho/SM.ps
http://www.damtp.cam.ac.uk/user/tong/qft.html
http://www.damtp.cam.ac.uk/user/wingate/StdM


Chiral and gauge symmetries

In this chapter we present a few concepts which may have been
introduced in last term’s courses, but which are crucial to construct-
ing the Standard Model. This also allows us to set our notation and
conventions. Throughout, we use natural units, h̄ = c = 1.

2.1 Chiral symmetry

We begin with spin- 1
2 fermions. Let ψ(x) be a spinor field satisfying

the Dirac equation8 8 The slash indicates contraction of a
4-vector with the Dirac γ-matrices:
/∂ ≡ γµ∂µ.

(i /∂−m)ψ = 0 .

The Dirac-adjoint field ψ̄ = ψ†γ0 satisfies9 9 The arrow above ∂ indicates that the
derivative acts to the left.

ψ̄(−i /
←
∂ −m) = 0 .

The Dirac matrices satisfy the anticommutation relation

{γµ, γν} = 2gµν
1 (2.1.1)

where gµν is the Minkowski metric and 1 is the 4× 4 identity ma-
trix. From now on, we will dispense with the blackboard bold font
for identity matrices unless it is crucial for clarity. These notes will
use the signature (+,−,−,−) as is usual in particle physics. When
we need an explicit representation for the Dirac matrices, we will
usually use the chiral representation; written as 2× 2 block matrices
of 2× 2 matrices they are

γ0 =

(
0 1
1 0

)
, γi =

(
0 σi

−σi 0

)
(2.1.2)

with Pauli matrices σi. This choice for γ0 differs from the Bjorken-
Drell (or the nonrelativistic) and Dirac representations, but is useful
when concerned with chiral symmetry.

Now we will consider the Dirac equation in the massless limit,
m = 0. Despite the fact that in Nature, all fermions appear to have
mass – in fact a diverse range of masses – the massless limit is the
natural foundation (from the theorist’s perspective) from which to
construct the Standard Model. We will see this when we treat the
electroweak theory in depth.

Let us introduce γ5:

γ5 = −i γ0γ1γ2γ3 =

(
1 0
0 −1

)
; (2.1.3)
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the last equality holds only in the chiral representation. It is useful
later to note here that

(γ5)2 = 1, {γ5, γµ} = 0 .

Since γ5 anticommutes with γµ, if ψ solves the massless Dirac equa-
tion, then γ5ψ is also a solution:

/∂ψ = 0 ⇒ /∂(γ5ψ) = 0 .

It is useful to work with the linear combinations

ψL(x) =
1
2
(1− γ5)ψ(x) = PLψ(x)

ψR(x) =
1
2
(1 + γ5)ψ(x) = PRψ(x) . (2.1.4)

where we have implicitly defined the operators PL,R. These are
projection operators:

(PL,R)
2 = PL,R , PLPR = 0 = PRPL , PL + PR = 1 .

With the convention (2.1.3) the lower (upper) 2 components of 4-
component spinors contain the left-handed (right-handed) degrees-
of-freedom. Because γ5 anticommutes with γ0

ψ̄L(x) = ψ̄(x)PR , and ψ̄R(x) = ψ̄(x)PL .

The field ψL,R are eigenvectors of γ5, with eigenvalues ∓1, and are
said to have definite chirality – this is why the representation (2.1.2)
is called “chiral.” We shall give further justification to the terms
“left-” and “right-handed” in the next chapter.

We can see that a massless Dirac fermion possesses a U(1)L ×
U(1)R chiral symmetry as follows. Writing ψ(x) = ψL(x) + ψR(x)
and similarly for ψ̄(x) the Dirac Lagrangian L = ψ̄(i /∂ − m)ψ

becomes

L = ψ̄L i /∂ ψL + ψ̄R i /∂ ψR − m (ψ̄RψL + ψ̄LψR) . (2.1.5)

Performing global rotations independently for the two chiralities

ψL(x) 7→ ei αL ψL(x) , ψ̄L(x) 7→ ψ̄L(x)e−i αL

ψR(x) 7→ ei αR ψR(x) , ψ̄R(x) 7→ ψ̄R(x)e−i αR (2.1.6)

it is clear that the kinetic term is invariant while the mass term is
not. The mass term explicitly breaks the chiral symmetry down to a
single vector-like one: U(1)L ×U(1)R → U(1)V , corresponding to
(2.1.6) with αL = αR.

2.2 Gauge symmetry

If we “gauge” the symmetry (2.1.6)

ψL(x) 7→ ei αL(x)ψL(x) , ψ̄L(x) 7→ ψ̄L(x)e−i αL(x)

ψR(x) 7→ ei αR(x)ψR(x) , ψ̄R(x) 7→ ψ̄R(x)e−i αR(x) (2.2.1)
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then the kinetic term in the Lagrangian (2.1.5) is no longer invari-
ant. Dropping the L and R subscripts and thinking generally about
U(1) gauge transformations, another term is generated due to the
spatial dependence of the transformation parameter(s)

ψ̄ i /∂ ψ 7→ ψ̄ i /∂ ψ − (ψ̄γµψ)(∂µα) .

We need a gauge covariant derivative Dµ which acts on ψ so that

Dµψ(x) 7→ exp(i α(x)) Dµψ(x) .

We obtain this by introducing gauge fields A(L,R),µ(x).

Dµψ = (∂µ + i gAµ)ψ

with the gauge fields transforming as

Aµ(x) 7→ Aµ(x)− 1
g

∂µα .

Now ψ̄ i /D ψ is invariant under gauge transformations.10 10 Note that one can flip some signs in
these formulae by flipping the sign in
the gauge transformation (α 7→ −α).
Other additional signs can differ due
to how the fields are introduced. See
the Introduction and

J C Romão and J P Silva. A resource
for signs and Feynman diagrams of
the Standard Model. Int. J. Mod. Phys.,
A27:1230025, 2012. arXiv:1209.6213

The gauge fields contribute a kinetic energy term to the La-
grangian. This is given in terms of the field strength

Fµν = ∂µ Aν − ∂ν Aµ ,

or equivalently by solving

[Dµ, Dν] = i gFµν ,

as
L = − 1

4
FµνFµν .

QED has a U(1) gauge symmetry which treats left- and right-
handed components equivalently, so we set αL = αR above. For
a theory which only involved interactions between left-handed
particles, we would only need to introduce AL. In fact, the weak
gauge bosons do only couple to the left-handed components of
particles; however, U(1) is not the appropriate local symmetry. The
weak interactions change one particle into another, predominantly
a specific partner. This is realized theoretically through an SU(2)
gauge symmetry.

The introduction of nonabelian gauge fields proceeds along
similar lines to those above. The field transformations (2.2.1) are
generalized to introduce a transformation for each generator of
the gauge group. (In order to avoid cumbersome writing, let us
not specify whether the gauge group couples to one or both of the
chiral eigenstates.)

ψi(x) 7→ exp(i taθa(x))ijψj(x) ≡ Uijψj(x) ,

ψ̄i(x) 7→ ψ̄j(x) exp(−i taθa(x))ji ≡ ψ̄j(x)(U†)ji (2.2.2)

where the ta are the Hermitian generators in an n-dimensional
representation R (i, j = 1, . . . , n) of a given gauge group whose
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dimension is D (a = 1, . . . , D). (For SU(N), D = (N2 − 1).) We
implicitly specialized to unitary groups and introduced U as an
element of the group. The generators form a Lie algebra, i.e.

[ta, tb] = i f abctc (2.2.3)

where f abc are called structure constants, and are normalized such
that

Tr(tatb) = T(R) δab . (2.2.4)

T(R) is the Dynkin index of the representation, e.g. is equal to 1
2

for the fundamental representation (n = N) and T(R) = N for the
adjoint representation of SU(N). Recall the adjoint representation is
one where (ta)bc = −i f abc, thus n = D.11 In the Standard Model, 11 See Peskin & Schroeder §15.4 for a

more thorough introduction.the fermion fields belong to either the trivial or fundamental repre-
sentations of the 3 constituent gauge groups.

In the nonabelian case the covariant derivative becomes

(Dµ)ij = ∂µδij + ig(ta Aa
µ)ij (2.2.5)

so that (Dµψ(x))i 7→ (U(x)Dµψ(x))i. It is usual to drop the index i
which runs from 1 to n. Constructing the field strength from

[Dµ, Dν] = igtaFa
µν (2.2.6)

we find
Fa

µν = ∂µ Aa
ν − ∂ν Aa

µ − g f abc Ab
µ Ac

ν . (2.2.7)

The gauge-field-only term in the Lagrangian is then

Lg = − 1
4

Fa
µνFa,µν = − 1

4
TrFµνFµν . (2.2.8)

2.3 Symmetry, a synopsis

Following Donoghue, Golowich, Holstein, §I-512 let us enumerate 12 J F Donoghue, E Golowich, and B R
Holstein. Dynamics of the Standard
Model. Cambridge University Press,
1992. ISBN 0-521-47652-6

the possible ways symmetries may manifest themselves

1. The symmetry may be intact. For example, the gauge symme-
tries U(1)EM and SU(3)C are manifestly respected in QED and
QCD.

2. A symmetry of the Lagrangian may be broken by an anomaly.
We say the symmetry holds classically, but then is broken by
quantum effects. (More on anomalies later, perhaps.) In this case,
the symmetry is not a true symmetry of the theory. The global
axial symmetry suffers this fate in the Standard Model.

3. The symmetry may hold for some terms in the Lagrangian,
but not others. The symmetry is said to be broken explicitly. If
the symmetry-breaking terms are small, then the approximate
symmetry still is a leading-order picture which one can refine
perturbatively. Isospin symmetry relating u and d quarks is
explicitly broken by electromagnetic and quark mass effects, both
of which can be treated as small corrections for most purposes.
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4. The Lagrangian may possess a certain symmetry, but the vac-
uum may not respect it. In this case we say the symmetry is
spontaneously broken. Actually, there are physical consequences
when a symmetry is spontaneously broken rather than explic-
itly broken, so really this is a case of a hidden symmetry. The
SU(2)L ×U(1)Y gauge symmetry is broken down to U(1)EM by
spontaneous symmetry breakdown. We shall study this in depth
shortly.

The Standard Model contains examples of all of these possibil-
ities. For me, this is one of the most fascinating aspects of particle
physics as we understand it. Although much has been written
about beauty and symmetry, the ways in which symmetries are
broken or hidden are even more interesting.





Discrete symmetries

The preceding chapter reviewed chiral symmetry and gauge theo-
ries. This puts us in a good frame of mind to begin discussing the
electroweak theory, which turns out to be a chiral gauge theory in-
volving only left-handed particles. This fact has consequences for
discrete symmetries. Unlike gauge theories which have vector-like
couplings to Dirac fermions, such as QED and QCD, chiral gauge
theories are not symmetric under the operations of parity-flip or
charge conjugation.

In fact it turns out that the combination of parity and charge
conjugation is also violated by the weak interactions. This CP viola-
tion is one important ingredient in the evolution of the cosmos. As
realized by Sakharov, CP violation, nonequilibrium thermodynam-
ics, and particle number violation are all necessary conditions for
generating more matter than antimatter in the universe. According
to the CPT theorem we will discuss later, CP violation implies a
violation of time reversal symmetry.

Before we can appreciate these statements, first we must inves-
tigate the consequences for theories which do respect the discrete
symmetries P, C, and T; that is, theories which would hold equally
well in our laboratories as well as in mirror-world laboratories, lab-
oratories made out of antimatter, and laboratories where time runs
backwards.

3.1 Symmetry operators

Before we investigate the behaviour of quantum fields under par-
ity, charge conjugation, and time reversal, we must introduce the
quantum operators corresponding to these transformations.

Parity and time-reversal are special cases of Lorentz transforma-
tions. Including rotations, boosts, and transformations, a Lorentz
transformation is a change of coordinate frame:

xµ 7→ x′µ = Λµ
νxν + aµ .

If det Λ = 1, the Lorentz transformation is said to be proper. Parity
and time-reversal are improper transformations, with Λ respec-
tively given by

P =

(
1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

)
and T =

(
−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

)
. (3.1.1)
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In order to introduce quantum operators, let Ψ, Ψ′ and Φ be
generic vectors in some Hilbert space. Wigner showed that if
physics is invariant under a transformation Ψ 7→ Ψ′, then there
is an operator W such that Ψ′ = WΨ where (for α, β ∈ C) either{

(WΦ, WΨ) = (Φ, Ψ)

W(αΦ + βΨ) = αWΦ + βWΨ
W is unitary
and linear

(3.1.2)

or {
(WΦ, WΨ) = (Φ, Ψ)∗

W(αΦ + βΨ) = α∗WΦ + β∗WΨ
W is anti-unitary
and anti-linear.

(3.1.3)

Let W now be the operator corresponding to a Lorentz transfor-
mation for a given rotation/boost Λµ

ν and translation aµ,

Ψ 7→ Ψ′ = W(Λ, a)Ψ .

Note that the Lorentz transformation operators obey the following
composition rule which will need shortly:

W(Λ2, a2)W(Λ1, a1) = W(Λ2Λ1, Λ2a1 + a2) . (3.1.4)

We wish to consider the special operators for parity and time-
reversal. Let us denote these by

P̂ = W(P , 0) and T̂ = W(T , 0) . (3.1.5)

Let us look at how these transformations combine with an infinites-
imal, proper Lorentz transformation

Λµ
ν = δµ

ν + ωµ
ν, aµ = εµ

with ωµ
ν and εµ small parameters. In this case we expand the cor-

responding quantum operator as13 13 S Weinberg. The Quantum Theory of
Fields, Volume I. Cambridge University
Press, 1995. ISBN 0-521-55001-7W(1 + ω, ε) = 1 +

i
2

ωµν Jµν − iεµPµ + . . . (3.1.6)

where P0 = H is the energy operator, i.e. the Hamiltonian; ~P =

(P1, P2, P3) is the linear momentum operator, generator of transla-
tions; ~J = (J23, J31, J12) is the angular momentum operator, genera-
tor of rotations; and ~K = (J01, J02, J03) generates Lorentz boosts. Let
us consider how the parity and time-reversal operators act on these
operators. Using the composition rule (3.1.4),{

P̂ W(Λ, a) P̂−1 = W(PΛP−1, Pa)
T̂ W(Λ, a) T̂−1 = W(T ΛT −1, T a)

(3.1.7)

Inserting (3.1.6) and equating the coefficients of −εµ, we find{
P̂ iPµ P̂−1 = iPν

µPν

T̂ iPµT̂−1 = iTν
µPν (3.1.8)

and focusing on the µ = 0 component{
P̂ iHP̂−1 = iH
T̂ iHT̂−1 = −iH

. (3.1.9)
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In §3.4 we will also want to look at the
coefficients of 1

2 ωµν

T̂iJµν T̂−1 = iTρ
µTσ

ν Jρσ

−iT̂~JT̂−1 = i~J

T̂~JT̂−1 = −~J . (3.1.10)

Thus we see that angular momentum
flips sign under T.

In order to understand the properties of the operators corre-
sponding to parity and time-reversal, let Ψ be an energy eigenstate
with energy E: (Ψ, iHΨ) = iE. Assuming P and T are symmetries
of our theory, then the energy of the transformed states P̂Ψ and
T̂Ψ should also be E. As we show below, this implies that P̂ must
be linear and unitary, while T̂ must be anti-linear and anti-unitary.
Treating as P̂ as linear

(P̂Ψ, iHP̂Ψ) = (P̂Ψ, P̂iHΨ) = (P̂Ψ, P̂iEΨ) = iE(P̂Ψ, P̂Ψ) = iE .

For unitary P̂:

(P̂Ψ, iHP̂Ψ) = (P̂Ψ, P̂iHΨ) = (Ψ, iHΨ) = iE .

For anti-linear T̂:

(T̂Ψ, iHT̂Ψ) = −(T̂Ψ, T̂iHΨ) = −(T̂Ψ, T̂iEΨ) = −(iE)∗(T̂Ψ, T̂Ψ) = iE .

For anti-unitary T̂:

(T̂Ψ, iHT̂Ψ) = −(T̂Ψ, T̂iHΨ) = −(Ψ, iHΨ)∗ = iE .

Choosing otherwise would imply that parity or time-reversal
mapped positive energy states to negative energy states.

3.2 Parity

To say that physics is symmetric under parity transformations
implies that reflections do not change the laws of physics. We wish
to investigate the consequences of moving from our world to a
mirror world, mapping left to right, etc, as follows

x 7→ xP = (x0,−~x) (3.2.1)

imposing the requirement that physical results are unchanged. First
we consider bosonic fields, then Dirac fermion fields.

Boson field

Let us consider the quantum scalar field φ(x), which we can write
as a sum of plane waves (using relativistic normalization)

φ(x) = ∑
p

[
a(p) e−ip·x + c†(p) eip·x

]
. (3.2.2)

We have introduced a shorthand notation for the momentum inte-
grals

∑
p
≡

∫ d3 p
(2π)3(2E~p)

. (3.2.3)

The operator a†(p) creates a particle with momentum p and c†(p)
creates an antiparticle with momentum p. Given the parity transfor-
mation (3.2.1), which in momentum space is equivalent to

p 7→ pP = (p0,−~p) ,
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the unitary operator P̂ should map the momentum eigenstate |p〉 =
a†(p)|0〉 to |pP〉 = a†(pP)|0〉, up to a complex phase ηa∗, i.e.

P̂a†(p)|0〉 = ηa∗a†(pP)|0〉 .

Using P̂−1P̂ = 1 and assuming the uniqueness of the vacuum14 we 14 P̂|0〉 = |0〉
find

P̂a†(p)P̂−1 = ηa∗a†(pP) .

Similarly for antiparticle excitations

P̂c†(p)P̂−1 = ηc∗c†(pP) .

In order to conserve normalizations (of wavepackets for example)
P̂ should be unitary and P̂a(p)P̂−1 = η

a
Pa(pP). Applying the parity

transformation to the scalar field (3.2.2), we find

In the last step we note that pP · x =

p · xP and

∑
p

a(pP) e−ip·x = ∑
pP

a(p) e−ipP ·x = ∑
p

a(p) e−ip·xP

and that ∑p is invariant under P

(
∫ ∞
−∞ dpi 7→ −

∫ −∞
∞ dpi =

∫ ∞
−∞ dpi).

P̂φ(x)P̂−1 = ∑
p

[
P̂a(p)P̂−1e−ip·x + P̂c†(p)P̂−1eip·x

]
= ∑

p

[
ηa a(pP) e−ip·x + ηc∗ c†(pP) eip·x

]
= ∑

p

[
ηa a(p) e−ip·xP + ηc∗ c†(p) eip·xP

]
.

Presently, φP(x) ≡ P̂φ(x)P̂−1 looks like a different field from φ(xP).
This is not what we expect physically; in a P-symmetric theory, we
should not need different rules for how to combine particle and
antiparticle plane waves into a scalar field. Furthermore, inconsis-
tencies with Lorentz invariance: for general ηa and ηc, [φ(x), φP(y)]
does not vanish for spacelike x − y. These problems are solved if
ηa = ηc∗

P ≡ ηP, hence

P̂φ(x)P̂−1 = ηP φ(xP) = φP(x) . (3.2.4)

The phase ηP is the intrinsic parity of φ. If φ is a real field, then
c(p) = a(p). Then

ηc = ηa =⇒ η
∗
P = ηP =⇒ ηP = ±1

{
φ scalar
φ pseudoscalar .

In other words, the intrinsic parity of real (and therefore neutral)
fields has definite meaning. On the other hand for complex φ(x)
which has a conserved charge Q, using the fact that the correspond-
ing operator Q̂, P̂, and the Hamiltonian Ĥ are all mutually com-
muting, we can redefine P̂ by multiplying by a phase P̂′ = P̂e−iαQ

with α chosen so that P̂′2 = 1. The original ηP is thus expressible in
terms of the charge Q. (Further discussion appears in Weinberg §2.2
and §3.3.15) 15 S Weinberg. The Quantum Theory of

Fields, Volume I. Cambridge University
Press, 1995. ISBN 0-521-55001-7

For vector fields

Vµ(x) = ∑
p,λ

[
ελ,µ(p)aλ(p)e−ip·x + ελ,µ∗(p)cλ†(p)eip·x

]
(3.2.5)

where ελ,µ(p) are polarization vectors (say, λ = −1, 0, 1). In order
to consider how Vµ is transformed under P we perform the same
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steps as with the scalar field. Additionally we need the relation
between polarization vectors when p 7→ pP

ελ,µ(pP) = −Pµ
νελ,ν(p) . (3.2.6)

This can be shown using Lorentz boosts. For example, one chooses
the polarization vectors in the particle’s rest frame in some basis,
such as

ε−1,µ(0) =
( 0

1
−i
0

)
, ε0,µ(0) =

( 0
0
0
1

)
, ε1,µ(0) =

( 0
1
i
0

)
,

and boosts to a frame moving with respect to the particle with mo-
mentum p or pP, e.g. ελ,ν(p) = Lµ

ν(p)ελ,ν(0), with L(p) a standard
Lorentz boost. The conclusion one reaches is that

P̂Vµ(x)P̂−1 = −ηPPµ
νVν(xP) . (3.2.7)

With the conventions above polar vector fields have ηP = −1 while
axial vector fields have ηP = 1.

Dirac field

Recall the solution of the free Dirac equation can be expressed as a
combination of plane waves

ψ(x) = ∑
p,s

[
bs(p) us(p) e−i p·x + ds†(p) vs(p) ei p·x

]
. (3.2.8)

The operators b†(p) and d†(p) respectively create positive and
negative frequency particles.16 us(p) and vs(p) are 4-component 16 We will mostly use relativistically

normalized states |p〉 = b†(p)|0〉.
These are related to nonrelativistically
normalized states, |~p〉, by |p〉 =√

2E~p|~p〉 =
√

2E~p b†
~p|0〉.

spinors satisfying (/p−m)u = 0 and (/p + m)v = 0 and s = ± 1
2 .

In the chiral representation (2.1.2) we can write,

us(p) =

(√
p · σ ξs
√

p · σ̄ ξs

)
(3.2.9)

where σ = (1,~σ) and σ̄ = (1,−~σ).17 The ξs are 2-component 17 You can check this by showing (3.2.9)

solves
( −m pµσµ

pµσ̄µ −m

)(
u1
u2

)
= 0. It

may be useful to note that (p · σ)(p ·
σ̄) = (p0)2 − pi pjδij = p2 = m2 (recall
δij = −gij).

In order to deal with the square root
of a matrix like p · σ, we should work
in its eigenvector basis. In this case
it amounts to rotating the spatial
coordinates so that the 3-momentum is
in the ~e3 direction. Then

√
p · σ =

√
p0 − p3

(
1 + σ3

2

)
+
√

p0 + p3
(

1− σ3

2

)
.

spinors; as a convenient basis we take ξ1/2 = (1, 0)T and ξ−1/2 =

(0, 1)T . We can also at this stage deduce that

vs(p) =

( √
p · σ ζs

−√p · σ̄ ζs

)
(3.2.10)

for some 2-component spinors ζs. We will find a relation between
ζs and ξs when we discuss charge conjugation in § 3.3.

To see why we associate this property with a type of handedness
(left or right), we will make use of the total angular momentum
operator, the sum of orbital and spin angular momentum operators:

~J = −i~r×∇ + ~S (3.2.11)

where

Si =
i
4

εijkγjγk = −1
2

(
σi 0
0 σi

)
(3.2.12)
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is the spin operator and satisfies γ5Si = 1
2 γ0γi = Siγ5. If we

consider the massless spinor us(p) and multiply the Dirac equation
/pu = 0 by γ0/p0 we obtain

γ0

p0 (γ
0 p0 − ~γ · ~p)us(p) = 0

(1 − 2~S · ~̂pγ5)us(p) = 0

where ~̂p ≡ ~p/|~p|, and |~p| = p0 in this massless case. By inserting
(PL + PR) = 1 in front of the spinor, using γ5PL,R = ∓PL,R and the
linear independence of uL and uR we conclude

(1 ± 2~S · ~̂p)us
L,R(p) = 0 . (3.2.13)

Note that the scalar product h ≡ ~S · ~̂p = ~J · ~̂p is the projection of
angular momentum in the direction of the linear momentum, i.e.
the helicity.18 Rewriting (3.2.13) one finds that uL,R are eigenvectors 18 Above we used p0 = |~p|, true only

for m = 0. Nevertheless the definition
of helicity is in terms of ~̂p even for
m > 0.

of the helicity operator with eigenvalues ∓ 1
2 :

hus
L,R = ∓1

2
us

L,R .

Therefore we can think of the eigenvectors with positive helicity,
uR, as obeying a right-hand rule for spin; correspondingly we call
uL spinors left-handed. We see that ψL is a field which annihilates
left-handed particle states. 19 19 The handedness indicated by the

helicity is not Lorentz invariant for
massive particles; one can always boost
to a frame where the momentum and
hence the helicity flips sign. However
for massless particles discussed here,
helicity and chirality coincide.

One can also show the Dirac adjoint field ψ̄L(R) is left-handed
(right-handed). Given

ψ̄(x) = ∑
p,s

[
bs†(p)ūs(p)eip·x + ds(p)v̄s(p)e−ip·x

]
we can apply the same steps as before. Looking at the antiparticle
spinor, we find

v̄s(p)/p
(

γ0

p0

)
= 0

v̄s(p)(PR + PL)(1 + 2γ5~S · ~̂p) = 0

v̄s
L,R(p)(1± 2γ5~S · ~̂p) = 0

v̄s
L,R(p)(1± 2~S · ~̂p) = 0

v̄s
L,R(p)h = ∓1

2
v̄s

L,R(p)

Thus ψ̄L(R) annihilates a left-handed (right-handed) antiparticle.

Having established the notations and conventions for Dirac
fields, we consider their behaviour under parity transformations.
The creation operators (and hence annihilation operators) should
transform as in the case of bosons: under parity a particle’s spa-
tial momentum switches directions; the spin component s is left
unchanged. For the moment, we assign a different phase to the 2

operators:

P̂bs(p)P̂−1 = ηbbs(pP)

P̂ds†(p)P̂−1 = ηd∗ds†(pP) . (3.2.14)
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When we transform the Dirac field (3.2.8), we find

P̂ψ̂(x)P̂−1 = ∑
p,s

[
P̂bs(p)P̂−1us(p)e−ip·x + P̂ds†(p)P̂−1vs(p)eip·x

]
= ∑

p,s

[
ηbbs(pP)u

s(p)e−ip·x + ηd∗ds†(pP)v
s(p)eip·x

]
= ∑

p,s

[
ηbbs(p)us(pP)e

−ip·xP + ηd∗ds†(p)vs(pP)e
ip·xP

]
.

Finally we must determine the relationship between the spinors
as p 7→ pP. Using Lorentz boosts, one finds

us(pP) = γ0us(p) and vs(pP) = −γ0vs(p) . (3.2.15)

This can be verified as well in a particular basis such as the chiral
basis used in (3.2.9) and (3.2.10). 20 Requiring ηb = −ηd∗ ≡ ηP so 20 Note that p · σ̄ = pP · σ.

that the transformed field takes the form of the original field, we
find

ψP(x) = P̂ψ(x)P̂−1 = ηPγ0ψ(xP) . (3.2.16)

Likewise
ψ̄P(x) = P̂ψ̄(x)P̂−1 = η

∗
Pψ̄(xP)γ

0 . (3.2.17)

From (3.2.16) and (3.2.17) we can easily show that the parity trans-
formation swaps left-handed and right-handed chiralities:

P̂ψL(x)P̂−1 = ηPγ0ψR(xP)

P̂ψ̄L(x)P̂−1 = η
∗
Pψ̄R(xP)γ

0 . (3.2.18)

We can check that ψP satisfies the Dirac equation, assuming ψ

does:

(i/∂−m)ψP(x) = ηP(iγ
0∂0 − i~γ · ∇ −m)γ0ψ(xP)

= ηP(iγ
0∂0 + i~γ · ∇ −m)γ0ψ(x)

= ηPγ0(iγ0∂0 − i~γ · ∇ −m)ψ(x)

= ηPγ0(i /∂−m)ψ(x) = 0 .

With (3.2.16) and (3.2.17), one can determine the transformation
properties of composite operators such as bilinears:

ψ̄(x)ψ(x) 7→ ψ̄(xP)ψ(xP) scalar,
ψ̄(x)γ5ψ(x) 7→ −ψ̄(xP)γ

5ψ(xP) pseudoscalar,
ψ̄(x)γ0ψ(x) 7→ ψ̄(xP)γ

0ψ(xP) charge density,
ψ̄(x)γiψ(x) 7→ −ψ̄(xP)γ

iψ(xP) current density.

Note the last two lines show ψ̄γµψ transforms as a vector field as
discussed earlier in this section. Similarly ψ̄γµγ5ψ transforms as an
axial-vector field.

3.3 Charge conjugation

We now investigate the behaviour of fields in theories which treat
particles and antiparticles on equal footing.
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Boson field

Consider how the scalar field φ transforms under C. The corre-
sponding unitary operator Ĉ should transform a momentum eigen-
state of a particle to one of its antiparticle. Defining the phase ηC

such that21 21 We could introduce different phases
for the 2 operators, but Lorentz invari-
ance requires the choice given here,
similar to what we saw in the previous
section.

Ĉ a(p) Ĉ−1 = ηC c(p)

Ĉ c(p) Ĉ−1 = η
∗
C a(p)

we find

Ĉ|p, particle〉 = Ĉa†(p)|0〉 = η∗Cc†(p)|0〉 = η∗C|p, antiparticle〉 .

In the decomposition of φ(x) in terms of plane waves (3.2.2), a(p)
annihilates particles while c(p) annihilates antiparticles. Then

Ĉ φ(x) Ĉ−1 = ηC φ†(x)

Ĉ φ†(x) Ĉ−1 = η∗C φ(x) . (3.3.1)

If φ† = φ then the field has definite intrinsic charge-conjugation
parity: ηC = ±1. However, if φ is complex, then ηC is arbitrary. Say
ηC = e2iβ, then we can perform a global U(1) rotation φ 7→ φ′ =
e−iβφ so that Ĉφ′Ĉ−1 = (φ′)†. That is, we can redefine a complex φ

so that it has ηC = 1.
For real fields ηC = ±1 has physical significance. As we shall see,

the photon field Aµ(x) must obey

ĈAµ(x)Ĉ−1 = −Aµ(x) (3.3.2)

in order for the interactions with Dirac fermions to be C-invariant.
As a consequence, a particle with ηC = +1 such as the π0 cannot
decay to an odd number of photons.22 22 We know experimentally that the π0

can decay to 2 photons, thus we can
infer that η

π0
C = (−1)2.

Dirac field

As with the scalar field, the particle and antiparticle operators are
swapped under C

Ĉbs(p)Ĉ−1 = ηCds(p)

Ĉds†(p)Ĉ−1 = ηCbs†(p) .

Operators on the left-hand sides of the above equations appear in
the field ψ, while those on the right-hand sides appear in ψ̄.

We will see that the transposes of the Dirac matrices are neces-
sary ingredients in working out the charge conjugated Dirac field.
In conventional basis, γ0 and γ2 are symmetric while γ1 and γ3 are
anti-symmetric. Let us define a matrix C which gives symmetric
matrices when multiplied by any γµ

(Cγµ)T = Cγµ . (3.3.3)

One choice is

C = −iγ0γ2 =

(
iσ2 0
0 −iσ2

)
(3.3.4)



21

with the last equality holding in our γ-matrix basis. One can check
that C is anti-symmetric, real, and unitary:

C = −CT = −C† = −C−1 .

Thus the transposed γ-matrix is given by

γµT = −CγµC−1 . (3.3.5)

The γµT form an equivalent Clifford algebra to the γµ:

{γµT , γνT} = 2gµν .

We also note
γ5T = Cγ5C−1 . (3.3.6)

Thus the charge conjugated field is

Ĉψ(x)Ĉ−1 = ηC ∑
p,s

[
ds(p) us(p) e−ip·x + bs†(p) vs(p) eip·x

]
.

(3.3.7)
We can compare this to the transpose of the Dirac-adjoint field

ψ̄T(x) = ∑
p,s

[
bs†(p) ūsT(p) eip·x + ds(p) v̄sT(p) e−ip·x

]
. (3.3.8)

In fact for the spinors (3.2.9) and (3.2.10), taking ζs = iσ2ξs∗ allows
us to write

vs(p) = CūsT(p) and us(p) = Cv̄sT(p) . (3.3.9)

Thus
ψc(x) = Ĉψ(x)Ĉ−1 = ηCCψ̄T(x) (3.3.10)

where we can think if ψC as a particle transforming in the complex-
conjugated representation representation to ψ, or as an antiparticle.
Similar steps as those above lead to

ψ̄c(x) = Ĉψ̄(x)Ĉ−1 = η∗CψT(x)C = −η∗CψT(x)C−1 . (3.3.11)

Finally, we can see that C maps, for example, left-handed particles
to left-handed antiparticles

ĈψL(x)Ĉ−1 = ηCCψ̄T
R(x) ≡ ψc

L(x)

Ĉψ̄L(x)Ĉ−1 = −η
∗
CψT

R(x)C−1 ≡ ψ̄c
L(x)C−1 . (3.3.12)

Let us explicitly check that ψc
L(x) is left-handed as our notation

suggests. Given γ5ψL,R = ∓ψL,R (and hence ψ̄L,Rγ5 = ±ψ̄L,R), then

γ5Cψ̄T
R = Cγ5Tψ̄T

R = C(ψ̄Rγ5)T = −Cψ̄T
R .

Thus the γ5-eigenvalue of ψc
L(x) is that of a left-handed field.

We can show that ψc(x) satisfies the Dirac equation. Consider
the Dirac equation for ψ̄, times ηC:

ηCψ̄(x)(−i/
←
∂ −m) = 0 .
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Take the transpose

ηc(−i(γµ)T∂µ −m)ψ̄T(x) = 0 .

Insert C−1C between the Dirac operator and the field and left-
multiply the equation by C to find

(−iC(γµ)TC−1∂µ −m)ψc(x) = 0 .

Applying (3.3.5), we arrive at

(i /∂−m)ψc(x) = 0

as required.
Majorana fermions are ones where bs(p) = ds(p); that is, the

particle is its own antiparticle. In that case ψc = ψ. It is not yet
known whether the only neutral fermions in the Standard Model,
the neutrinos, are Majorana fermions.

Let us consider the behaviour of fermion bilinears under C. It
is convenient to work with anti-symmetrized operators, as this will
make the transformation properties manifest. For example let us
take the as the vector current (corresponding to ψ̄γµψ)

jµ(x) =
1
2
(ψ̄γµψ− ψTγµTψ̄T) =

1
2
(γµ)ij[ψ̄i(x), ψj(x)] . (3.3.13)

In the last step we label the spin indices explicitly. Then jµ has well-
defined behaviour under C. Using (3.3.10) and (3.3.11) we find

ĈjµĈ−1 =
1
2
(γµ)ij[Ĉψ̄iĈ−1, ĈψjĈ−1]

= −1
2
(γµ)ij[(ψ

TC−1)i, (Cψ̄T)j]

= −1
2
(C−1γµC)k`[ψk, ψ̄`]

=
1
2
(γµ)`k[ψk, ψ̄`] = −jµ .

(In the above argument, we drop the c-number arising from anti-
commuting ψ and ψ†.)

Recalling the transformation of the photon field (3.3.2), we see
that the interaction jµ(x)Aµ(x) is C-invariant; it induces transitions
only between states of equal charge.

One can undertake a similar calculation to show that the axial-
vector current

jµ5(x) =
1
2
(γµγ5)ij[ψ̄i(x), ψj(x)] (3.3.14)

behaves as
Ĉ jµ5 Ĉ−1 = +jµ5 .

Therefore (foreshadowing) a linear combination of jµ and jµ5, such
as the left-handed current jµL = 1

2 (jµ − jµ5) cannot couple to a
single field in a C-invariant way.
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3.4 Time reversal

The third and final discrete symmetry we investigate here is time
reversal

x 7→ xT = (−x0,~x) . (3.4.1)

In T-symmetric theories, the physics would be unchanged if the
flow of time were to run backwards.

Boson field

Given (3.2.2) and

T̂a(p)T̂−1 = ηTa(pT)

T̂c†(p)T̂−1 = ηTc†(pT) (3.4.2)

we find

T̂φ(x)T̂−1 = ∑
p

[
T̂a(p)T̂−1eip·x + T̂c†(p)T̂−1e−ip·x

]
= ηT ∑

p

[
a(p)e−ip·xT + c†(p)eip·xT

]
= ηTφ(xT) . (3.4.3)

In the first step we used anti-linearity of T̂−1 to write e±ip·x T̂−1 =

T̂−1e∓ip·x. In the second step we swapped integration variable
p↔ pT and noted ipT · x = −ip · xT .

Dirac field

In addition to taking p 7→ pT = (p0,−~p), we saw from (3.1.10)
that T will flip the sign of a particle’s angular momentum. Thus the
creation/annihilation operators for a particle/antiparticle with spin
s = ± 1

2 can be taken to transform as

T̂bs(p)T̂−1 = ηT(−1)
1
2−sb−s(pT)

T̂ds†(p)T̂−1 = ηT(−1)
1
2−sd−s†(pT) . (3.4.4)

One can show that the spinors satisfy

(−1)
1
2−su−s∗(pT) = −γ5Cus(p)

(−1)
1
2−sv−s∗(pT) = −γ5Cvs(p) . (3.4.5)

It is usual to define

B = γ5C =

(
iσ2 0
0 iσ2

)
. (3.4.6)

Then the Dirac field transforms as

T̂ψ(x)T̂−1 = ηT ∑
p,s
(−1)

1
2−s

[
b−s(pT)us∗(p)eip·x + d−s†(pT)vs∗(p)e−ip·x

]
= −ηT ∑

p,s
(−1)

1
2−s

[
bs(p)u−s∗(pT)e−ip·xT + ds†(p)v−s∗(pT)eip·xT

]
= ηTγ5Cψ(xT) = ηT Bψ(xT) . (3.4.7)
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Similarly

T̂ψ̄(x)T̂−1 = η∗Tψ̄(xT)B−1 . (3.4.8)
Exercise: Using B−1γ5∗B = γ5 verify
the following:

T̂ψL(x)T̂−1 = ηT BψL(xT)

T̂ψ̄L(x)T̂−1 = η
∗
T ψ̄L(xT)B−1

Bilinears. It is straightforward to check that ψ̄(x)ψ(x) 7→ ψ̄(xT)ψ(xT)

under T. For other cases, first let us note

B−1γ0∗B = γ0

B−1γi∗B = −γi .

Thus23 23 Insert T̂−1T̂ between ψ̄ and γµ

then complex conjugate γµ when
commuting it with T̂.T̂ψ̄(x)γµψ(x)T̂−1 = ψ̄(xT)B−1γµ∗Bψ(xT)

=

{
ψ̄(xT)γ

0ψ(xT) charge density
−ψ̄(xT)γ

iψ(xT) charge current

To conclude this section, we look at how the S-matrix trans-
forms under T. The S-matrix governing scattering is

S = T exp
(
−i
∫ ∞

−∞
dt V(t)

)
(3.4.9)

where
V(t) = −

∫
d3xLI(x)

is the potential energy term in the Hamiltonian, and LI contains
the interaction terms of the Lagrangian. For example in QED, the
electron-photon interaction term is

LI(x) = −eψ̄(x)γµ Aµ(x)ψ(x) .

We have already investigated the transformations of the La-
grange density under P, C, and T:

P̂LI(x)P̂−1 = LI(xP) , ĈLI(x)Ĉ−1 = LI(x) , T̂LI(x)T̂−1 = LI(xT) .

The consequent effects on V are straightforward to deduce

P̂V(t)P̂−1 = V(t) , ĈV(t)Ĉ−1 = V(t) , T̂V(t)T̂−1 = V(−t) .

However, while the properties of S under P and C are clear

P̂SP̂−1 = S , ĈSĈ−1 = S ,

more care is needed to examine S under T.
Let us expand the time-ordered exponential as

S = ∑
n
(−i)n

∫ ∞

−∞
dt1

∫ t1

−∞
dt2 · · ·

∫ tn−1

−∞
dtn V(t1)V(t2) · · ·V(tn) .

Then

ST = T̂ST̂−1

= ∑
n

in
∫ ∞

−∞
dt1

∫ t1

−∞
dt2 · · ·

∫ tn−1

−∞
dtn V(−t1)V(−t2) · · ·V(−tn)

= ∑
n

in
∫ ∞

−∞
dτ1

∫ τ1

−∞
dτ2 · · ·

∫ τn−1

−∞
dτn V(τn)V(τn−1) · · ·V(τ1)

= S† (3.4.10)
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where we changed variables τi = −t(n+1)−i and changed the limits
of integration.24 24 As in the simple example∫ 1

0 dx
∫ x

0 dy f (x, y) =
∫ 1

0 dy
∫ 1

y dx f (x, y).Before looking at S-matrix elements, let us introduce some no-
tation which will allow us to use Dirac’s bra-ket notation, which is
not normally suited to dealing with anti-linear, anti-unitary opera-
tors. Recall we need T̂ to satisfy (3.1.3):

(T̂Φ, T̂Ψ) = (Φ, T̂†T̂Ψ)∗ = (Φ, Ψ)∗ = (Ψ, Φ) . (3.4.11)

We also need to introduce some way of distinguishing whether an
operator acts on the bra or on the ket (i.e. whether it belongs on
the left-hand or right-hand side of the inner product in the (·, ·)
notation); let’s use a semi-colon. Let |φ〉 and |ψ〉 be the kets corre-
sponding to the vectors Φ and Ψ, then the equation above reads

〈φ|T̂†; T̂|ψ〉 = 〈φ|T̂†T̂|ψ〉∗ = 〈φ|ψ〉∗ = 〈ψ|φ〉 . (3.4.12)

(The absence of a semi-colon implies the operators act on the ket.)
Taking the Hermitian conjugate of (3.4.10), i.e. S = S†

T , and
introducing the time-reversed partners of two states |η〉 and |ζ〉
such that |ηT〉 = T̂|η〉 and |ζT〉 = T̂|ζ〉, we find

〈ηT |S|ζT〉 = 〈ηT |S†
T |ζT〉 = 〈η|T̂†; T̂S†T̂†T̂|ζ〉

= 〈η|S†|ζ〉∗ = 〈ζ|S|η〉 . (3.4.13)

We see that, given T̂LI(x)T̂−1 = LI(xT), S-matrix elements are
equal for time-reversed processes, where initial and final states are
swapped. Correspondingly, observables such as decay rates and
cross-sections are related.

3.5 CPT theorem

There is a theorem that says any Lorentz-invariant Lagrangian
density should be invariant under the product of P, C, and T.25 In 25 R.F. Streater and A.S. Wightman.

PCT, Spin and Statistics, and All That.
Addison-Wesley, 1989. ISBN 0-201-
09410-X

other words, there is no way to distinguish, for example, a particle
propagating forward in time from an antiparticle propagating back-
ward in time. Define the shorthand notation for the product of the
3 transformations

Θ̂ = ĈP̂T̂ . (3.5.1)

Then
Θ̂LI(x)Θ̂−1 = LI(−x)

This will have consequences on the creation and annihilation oper-
ators of momentum states, as we saw throughout this section. For
example, for Dirac fermions, the operators satisfy

Θ̂bs(p)Θ̂−1 = (−1)
1
2−sd−s(p) .

In the case of Dirac fermions, CPT maps a left-handed, spin-up,
forward-propagating particle to a right-handed, spin-down, backward-
propagating antiparticle.
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3.6 Applications

We close by remarking on the role of these discrete symmetries in
baryogenesis, the generation of a matter–antimatter asymmetry in
the universe. Sakarhov is credited with enumerating 3 necessary
conditions in order for such an imbalance to occur.

The first is baryon-number violation. There must be some pro-
cess between state X and state Y which yields a baryon excess (B):
X → Y + B.26 26 This is the simplest possibility.

Actually it is possible that it is a lepton
asymmetry which is initially created,
in which case we describe the process
as leptogenesis. Then excess baryons
can be generated through B + L
violation, which although conserved
at the level of the SM Lagrangian, is
violated by nonperturbative effects
related to the chiral anomaly; B− L is
still conserved.

The second is nonequilibrium so that the transition is not un-
done. In equilibrium, one would expect Y + B → X would be as
likely as X → Y + B, i.e.

Γ(Y + B→ X) = Γ(X → Y + B) in equilibrium (3.6.1)

whereas

Γ(Y + B→ X) ∝ exp(−MX/T) out of equilibrium . (3.6.2)

where T is temperature and MX is the mass of the state X.
The first part of the third condition is C violation. If the universe

starts with equal numbers of X and X̄ particles, then baryons are
produced at a rate

dB
dt

∝ Γ(X → Y + B)− Γ(X̄ → Ȳ + B̄) . (3.6.3)

C symmetry would imply that the two decay widths should be
equal, hence C must be violated in baryogenesis.

The final part of the third condition is CP violation. For simplic-
ity, let’s assume that the B is composed of n quarks and that there is
no extra Y left over.27 C-violation implies 27 The argument can be generalized,

but we are more interested in the main
point which is conveyed most simply
here.

Γ(X → nqL) 6= Γ(X̄ → nq̄L) (3.6.4)

Under CP, qL 7→ q̄R So even with C violation, CP symmetry would
imply

Γ(X → nqL) + Γ(X → nqR) = Γ(X̄ → nq̄L) + Γ(X̄ → nq̄R) (3.6.5)

which would preclude baryogenesis. Therefore, baryogenesis re-
quires CP violation.

Nonrelativistic quantum mechanics

This section is not being lectured in 2015.
Newtonian dynamics is T-invariant: if ~x(t) is a solution to m~̈x =

~F(~x) then so is ~x(−t). Care is needed if time or time-derivatives
appear in the equations of motion. T-invariance in the presence of
a Lorentz force m~̈x = q(~E(~x) + ~̇x × ~B(~x)) implies we must flip the
sign of the magnetic field: ~x(t)|~B a solution implies ~x(−t)|−~B is a
solution. In general under T, ~E(t,~x) 7→ ~E(−t,~x) and ~B(t,~x) 7→
−~B(−t,~x). If time flows backwards, magnetic north becomes south
and vice versa.
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If we consider the Schrödinger equation

i
∂

∂t
Ψ(t,~x) =

(
−∇

2

2m
+ V(~x)

)
Ψ(t,~x)

we can see that the left-hand side gets an extra minus sign relative
to the right-hand side when t 7→ −t. Thus in order to have a time-
reversed field which satisfies the Schrödinger equation, we make
use of the complex conjugate

Ψ(t,~x) 7→ ηTΨTR(t,~x) where ΨTR(t,~x) = Ψ∗(−t,~x) . (3.6.6)

(We use the superscript TR to avoid confusion with the transpose
operation.) Since two applications of T should return the original
wavefunction up to a phase, |ηT | = 1.

The difference between transformations like (3.6.6) compared to
those for P and C is that the time-reversal transformation is anti-
linear. If we let Ψ′ = αΨ then T transforms Ψ′ as

αΨ(t,~x) 7→ α∗ηTΨTR(t,~x) .

Under T, the direction of momentum should be reversed

T̂|~p〉 = | − ~p〉

A general state can be written as a linear combination of momen-
tum eigenstates

|Ψ〉 = ∑
~p

Ψ̃(~p)|~p〉 .

Thus,28 28 In the penultimate step we change
the sign of the summed momentum
variable.T̂|Ψ〉 = ∑

~p
Ψ̃∗(~p)| − ~p〉 = ∑

~p
Ψ̃∗(−~p)|~p〉 ≡ |ΨTR〉 .

We must be careful using anti-linear operators with Dirac’s bra-
ket notation. Let us use a semi-colon to separate operators which
act to the left from those which act to the right. Decomposing an-
other state |Φ〉 into its momentum components, we find

〈ΦTR|ΨTR〉 = 〈Φ|T̂†; T̂|Ψ〉 = 〈Φ|; T̂†T̂|Ψ〉∗ = 〈Ψ|Φ〉 .





Spontaneous symmetry breaking

In this chapter we present the main ideas behind symmetries which
are hidden. That is, symmetries respected by the Lagrangian, but
not manifest in physical observables.

Some of this material was presented in Prof Manton’s course last
term, but the ideas important enough to present again.

4.1 Spontaneous breaking of a discrete symmetry

Consider a real scalar field φ(x) with Lagrangian

L =
1
2

∂µφ ∂µφ − V(φ) . (4.1.1)

Let us assume a potential which is symmetric in φ; as a concrete
example let us take that corresponding to φ4-theory

Figure 4.1: Double well potential

V(φ) =
1
2

m2φ2 +
λ

4
φ4 ; λ > 0 .

The theory has a discrete symmetry: L is invariant under φ 7→ −φ.
In the usual case describing the physics of a massive scalar field,

m2 > 0 and V(φ) has a minimum at φ = 0. For small λ, we can de-
velop a perturbative expansion about the minimum of the potential.

If, on the other hand, if we allow ourselves to consider what
happens if m2 < 0, we see quite different behaviour. Let us com-
plete the square in V, defining v =

√
−m2/λ and dropping the

unimportant constant

V(φ) =
λ

4

(
φ2 − v2

)2
.

With this “double-well” potential, now φ = 0 corresponds to an
unstable vacuum. Instead there are two degenerate minima of the
potential, φ = ±v, and hence two degenerate vacua. We say that φ

has acquired a nonzero vacuum expectation value (VEV). Without
loss of generality, let us study a theory of small excitations from the
vacuum where φ = v, writing φ(x) = v + f (x).

L =
1
2

∂µ f ∂µ f − λ

(
v2 f 2 + v f 3 +

1
4

f 4
)

.

From the quadratic term, we see f (x) is a scalar field represent-
ing massive excitations with mass-squared m2

f = 2λv2. This La-
grangian, describing the leading-order behaviour in a perturbative
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expansion, is not invariant under sign flip, f 7→ − f . The symmetry
of the original Lagrangian is broken by the VEV of φ.

The fact that the vacuum is not unique can lead to interesting
nonperturbative consequences, but we will not explore these here.

4.2 Spontaneous breaking of a continuous symmetry

Let us begin our generalization to the case of spontaneous breaking
of continuous symmetries with a simple example, that of an N-
component real scalar field φ = (φ1, . . . , φN)

T . The Lagrangian is

L =
1
2

∂µφ · ∂µφ − V(φ) (4.2.1)

with29 29 φ2 = φ · φ; φ4 = (φ2)2.

V(φ) =
1
2

m2φ2 +
λ

4
φ4 ; λ > 0 .

and is invariant under global O(N) transformations of the field.
We are primarily interested in the case m2 < 0. We can replace

the potential (up to an irrelevant constant term) by

V(φ) =
λ

4

(
φ2 − v2

)2
; v2 = −m2

λ
> 0 .

This potential is often called the sombrero, or Mexican hat, poten-
tial even though it clearly bears a much closer resemblance to the
bottom of a wine bottle (Fig. 4.2, right). Now there are a contin-

Figure 4.2: Symmetric (m2 > 0) and
spontaneously broken (m2 < 0)
potentials.

uum of vacua satisfying φ2 = v2.
Without loss of generality let us choose the vacua such that

φ0 = (0, 0, . . . , 0, v)T . Studying small fluctuations from this field
configuration, let us define shifted fields, the N − 1 component
π(x) and 1 component σ(x) so that

φ(x) =


π1(x)
π2(x)

...
πN−1(x)
v + σ(x)

 .
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In terms of these, the Lagrangian is

L =
1
2

∂µπ · ∂µπ +
1
2

∂µσ∂µσ − V(π, σ) (4.2.2)

with

V(π, σ) =
1
2

m2
σσ2 + λv(σ2 + π2)σ +

λ

4
(σ2 + π2)2 .

Note that the σ field has a mass mσ =
√

2λv2, but the N − 1 π fields
are massless. This makes sense intuitively from the wine-bottle
shape of the potential (Fig. 4.2): radial excitations come with a large
energy penalty, whereas excitations in the field which locally seek
to transform the field to another of the equivalent vacua can be
made to have arbitrarily small energy difference from the vacuum.

Let us generalize to a symmetry group G of the Lagrangian,
which is broken down to a subgroup H ⊂ G by the vacuum.30 30 We will always be interested in the

case that H is a normal subgroup,
H / G.

That is, for a transformation φ(x) 7→ gφ(x) with g ∈ G (in some
representation)

V(gφ) = V(φ) ∀(g ∈ G) .

Let us assume though that G is spontaneously broken and hence
the vacuum is not unique but is described by a manifold Φ0 =

{φ0 : V(φ0) = Vmin}, the collection of all field configurations which
minimize V. The invariant subgroup (or stability group) H ⊂ G is
such that

H = {h : hφ0 = φ0} .

The different vacua in Φ0 are related by group transformations31 31 In other words we assume that G
acts transitively on Φ0. This is true in
the cases of physical interest, but one
can concoct counterexamples.

φ′0 = gφ0 for some g ∈ G .

Then the stability groups for the different vacua are isomorphic:
the invariant subgroup for φ′0 is H′ ' gHg−1. In fact the group
elements which map one vacuum to another belong to the coset
space G/H and fall into equivalence classes: we say g1 ∼ g2 if
∃h ∈ H such that g1 = g2h. Correspondingly φ′0 = g1φ0 = g2φ0

implies g−1
2 g1 ∈ H, so with each φ′0 ∈ Φ0 we can associate an

equivalence class. Thus we say

Φ0 ' G/H . (4.2.3)

Let us consider infinitesimal transformations

gφ = φ + δφ , with δφ = iαataφ

where a = 1, . . . , dimG, ta are the generators of the Lie algebra of
G (in the representation of φ) and the αa are small parameters. G-
invariance of the theory implies V(φ + δφ) = V(φ), or expanding
V(φ + δφ) about δφ = 0

V(φ + δφ)−V(φ) = iαa(taφ)r
∂V
∂φr

= 0 . (4.2.4)
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neglecting contributions higher order in the αa. Here r = 1 . . . N is
the index for components of φ in its representation of G.

Let φ0 be a minimum of V. Considering small departures from
this particular minimum, we have

V(φ)−V(φ0) =
1
2
(φ− φ0)r

∂2V
∂φr∂φs

∣∣∣∣
φ0

(φ− φ0)s .

The matrix of second derivatives can be equated with a mass-
squared matrix M2

rs. If we differentiate (4.2.4) and evaluate at φ0,
then we find32 32 The second term in the product rule

vanishes because V(φ0) is a minimum
and so the first derivative vanishes
there.

∂

∂φs

[
(taφ)r

∂V
∂φr

]∣∣∣∣
φ0

= 0

(taφ0)r
∂2V

∂φs∂φr

∣∣∣∣
φ0

= 0 . (4.2.5)

If the symmetry is unbroken and the vacuum is unique, i.e. gφ0 =

φ0 for all g ∈ G, then δφ = 0 and (taφ0) = 0 for all a. Otherwise, if
there are some g ∈ G such that there exists some a with (taφ0) 6= 0,
then taφ0 is an eigenvector of the mass-squared matrix with zero
eigenvalue: (taφ0)r M2

rs = 0.
We wish to find out how many eigenvectors of M2 have van-

ishing eigenvalue. Let us denote using a tilde the generators of G
which satisfy t̃iφ0 = 0. These generate a subgroup H ⊂ G, and
hence there are dimH of them. If G is compact and semi-simple
(as it usually is in cases interesting to us) then we can define a
group-invariant scalar product and therefore define the notion of
orthogonality. Then we can choose a basis for the Lie algebra of G
to be

ta = (t̃i, θ ã)

with the generators θ ã orthogonal to the t̃i: Trt̃iθ ã = 0. Each vec-
tor (θ ãφ0) is then a unique zero eigenvector and implies there are
dimG − dimH massless modes, one for each broken generator θ ã.
These massless modes are called Goldstone bosons.33 Since M2 33 or Nambu-Goldstone bosons.

is rank N, then we should expect N − (dimG − dimH) massive
modes.

In the O(N) model we saw at the beginning of this subsection,
the nonzero VEV broke the symmetry O(N) → O(N − 1). Given
that there are N(N − 1)/2 generators of O(N) (corresponding to
the same number of planes of rotation) and (N − 1)(N − 2)/2
generators of O(N − 1), we should expect N − 1 massless modes –
one for each broken generator. This is what we found for the N − 1
π fields.

We have just seen a classical proof of Goldstone’s theorem. We will
outline a fully quantum proof next.

4.3 Goldstone’s theorem

In this section, we discuss spontaneous symmetry breaking at the
fully quantum level, not resorting to arguments based on small



33

departures from the minimum of the classical potential.
Let us assume that the symmetry group G of the Lagrangian is

broken spontaneously down to a subgroup H. That is, a scalar field
gets a nonzero vacuum expectation value 34 34 Here we consider scalar field theory,

but in general φ could be a composite
local operator constructed out of a
different type of fundamental field, e.g.
φ(x) = ψ̄(x)ψ(x) in a gauge theory
with Dirac fermion field ψ(x).

〈0|φ(x)|0〉 = φ0 6= 0 . (4.3.1)

The VEV is invariant under transformations in H: 〈0|hφ(x)|0〉 = φ0

for h ∈ H. However the VEV is not invariant under transformations
g̃ ∈ G where g̃ /∈ H. Let us distinguish between generators of
the Lie algebra of G: ta where a ∈ [1, dim G]; and those of the Lie
algebra of H: t̃i where i ∈ [1, dim H]. Now, if G is a symmetry
group of the Lagrangian, there are conserved currents jaµ(x) and
charges Qa =

∫
d3x ja0(x) associated with each generator. These

charges induce a representation of the Lie algebra of G on φ

[Qa, φ(0)] = −itaφ(0) . (4.3.2)

In order to investigate excitations which result from the spon-
taneous breaking of the global symmetry, we consider the VEV
of the commutator of the conserved current with the scalar field
〈0|[jaµ(x), φ(0)]|0〉. It will be most instructive to use the Källén-
Lehmann spectral representation of the two-point function. First define
the spectral density functions as

iρaµ(k) = (2π)3 ∑
n

δ(4)(k− pn)〈0|jaµ(0)|n〉〈n|φ(0)|0〉

iρ̃aµ(k) = (2π)3 ∑
n

δ(4)(k− pn)〈0|φ(0)|n〉〈n|jaµ(0)|0〉 . (4.3.3)

Between the operators j(x) and φ(0), we insert a complete set of
states, ∑n |n〉〈n| = 1, and use the translation operator to write
jaµ(x) = eiP̂·x jaµ(0)e−iP̂·x, obtaining

〈0|[jaµ(x), φ(0)]|0〉 = i
∫ d4k

(2π)3

[
ρaµ(k)e−ik·x − ρ̃aµ(k)eik·x

]
. (4.3.4)

One can check this by inserting the expressions for iρaµ(k) and
iρ̃aµ(k) into the righthand side above and doing the integral over k.

The spectral density function can be further simplified. Lorentz
invariance implies proportionality with kµ, physical states imply
k0 > 0:

ρaµ(k) = kµΘ(k0)ρa(k2)

ρaµ(k) = kµΘ(k0)ρ̃a(k2) .

After substituting these into the integral (4.3.4) we can equate it to
the derivative of another integral

〈0|[jaµ(x), φ(0)]|0〉 = −∂µ
∫ d4k

(2π)3 Θ(k0)
[
ρa(k2)e−ik·x + ρ̃a(k2)eik·x

]
.
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Recalling the propagator given by

〈0|φ(z)φ(y)|0〉 =
∫ d3 p
(2π)32p0 e−ip·(z−y)

∣∣∣∣
p0=
√
|~p|2+σ

=
∫ d4 p

(2π)3 Θ(p0)δ(p2 − σ)e−ip·(z−y) ≡ D(z− y; σ)

(4.3.5)

We can replace ρ(k2) by
∫

dσ ρ(σ)δ(k2 − σ). We can write

〈0|[jaµ(x), φ(0)]|0〉 = −∂µ
∫

dσ [ρa(σ)D(x; σ) + ρ̃a(σ)D(−x; σ)] .

For spacelike x2 (i.e. x2 < 0) then D(x; σ) = D(−x; σ).35 Requiring 35 E.g. see §5.2 of Weinberg.

S Weinberg. The Quantum Theory of
Fields, Volume I. Cambridge University
Press, 1995. ISBN 0-521-55001-7

that 〈0|[jaµ(x), φ(0)]|0〉|x2<0 = 0 implies that we must have ρa(σ) =

−ρ̃a(σ). Thus

〈0|[jaµ(x), φ(0)]|0〉 = −∂µ
∫

dσρa(σ)i∆(x; σ) (4.3.6)

where

i∆(x; σ) = D(x; σ) − D(−x; σ)

=
∫ d4k

(2π)3 δ(k2 − σ) ε(k0) e−ik·x (4.3.7)

with ε(k0) = ∓1 for k0 ≶ 0. In obtaining the last line above, we
changed integration variable kµ 7→ −kµ in D(−x; σ).

Current conservation ∂µ jaµ = 0 and the Klein-Gordan equation
(∂2 + σ)∆ = 0 imply that when we differentiate (4.3.6) we obtain

0 =
∫

dσ σρa(σ)i∆(x; σ)

The fact that this is true for all x (in particular timelike x where
∆(x; σ) 6= 0) implies

σρa(σ) = 0 . (4.3.8)

There are 2 cases for the dim G spectral densities.

1. ρa(σ) = 0. This implies 〈0|[jaµ(x), φ(0)]|0〉 = 0, i.e. that ta is not
a broken generator.

2. ρa(σ) = Naδ(σ), with Na a dimensionful nonzero constant.

It is the second case which is interesting here. Write

〈0|[jaµ(x), φ(0)]|0〉 = −∂µ
∫

dσ Naδ(σ) i∆(x; σ) = −iNa∂µ∆(x; 0) .

To get an expression for the commutator of the charge Qa with
the field, we will want to integrate the equation above for µ = 0.
First let us prove an useful identity,

∫
d3x ∆(x, 0) = −x0. Since∫

d3x exp(i~k ·~x) = (2π)3δ(3)(~k),∫
d3x i∆(x, 0) = lim

σ→0

∫
dk0 δ((k0)2 − σ) ε(k0) e−ik0x0

= lim
σ→0

∫
dk0

[
δ(k0 −√σ)

|2√σ| +
δ(k0 +

√
σ)

| − 2
√

σ|

]
ε(k0) e−ik0x0

= lim
σ→0

1
2
√

σ

(
e−i
√

σ x0 − e i
√

σ x0
)

= −ix0 .
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Thus we find (4.3.2) becomes

taφ0 = i〈0|[Qa, φ(0)]|0〉 = Na
∫

d3x ∂0∆(x; 0) = −Na . (4.3.9)

The fact that Na 6= 0 and φ0 6= 0 implies some of the states in the
sums (4.3.3) have nonvanishing matrix elements. Let us label those
states by B and their momentum by p. Dimensional analysis and
Lorentz covariance implies we can parametrize the matrix elements
of the current and field as

〈0|jaµ(0)|B(p)〉 = iFa
B pµ (4.3.10)

〈B(p)|φ(0)|0〉 = ZB (4.3.11)

where the Fa
B are dimension-1 constants and ZB are dimensionless

constants. Note the states |B(p)〉 are spinless since φ(0)|0〉 is rota-
tionally invariant and massless since ρa(σ)δ(σ) only contributes for
σ = p2 = 0.

Inserting ρa(σ) = Naδ(σ) into (4.3.3), where now the sum over
complete states is an integral over the momenta of the Goldstone
boson states |B(p)〉

ikµΘ(k0)Naδ(k2) = ∑
B

∫ d3 p
2|~p| δ(4)(k− p)〈0|jaµ(0)|B(p)〉〈B(p)|φ(0)|0〉 .

Simplifying the right-hand side and expressing the left-hand side as
an integral we find∫ d3 p

2|~p| δ(4)(k− p) ikµNa =
∫ d3 p

2|~p| δ(4)(k− p) ipµ ∑
B

Fa
BZB

which implies
Na = ∑

B
Fa

BZB .

Since there are dim H generators of H which are unbroken, there
are exactly d = dim G − dim H broken generators, and the same
number of densities ρa(σ) which have nonzero contributions at σ =

0. Therefore (Fa
B) is a matrix of rank n and there are n Goldstone

bosons.
Nota bene, we assumed that we were working with a Lorentz

invariant theory in spacetime dimensions greater than 2. The count-
ing of the number of Goldstone modes is more subtle in nonrela-
tivistic theories. The Coleman-Merman-Wagner theorem trumps
the Goldstone theorem in 1 and 2 dimensional theories. Finally,
the proof of Goldstone’s theorem requires the space of states to
have positive definite norm, therefore gauge theories are exempt
as we should expect from the success of the Higgs mechanism and
electroweak theory.

4.4 Higgs mechanism

Or the Anderson-Brout-Englert-Guralnik-Hagen-Higgs-Kibble-’t
Hooft mechanism.36 36 F Close. The Infinity Puzzle. Oxford

University Press, 2011. ISBN 978-
0199593507
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Gauge theories do not satisfy all of the axioms supposed in
Goldstone’s theorem; depending on the choice of gauge, one of
the axioms must be violated. Taking QED as an example, if we
quantize imposing a Lorentz invariant gauge condition, such as
Lorenz gauge,37 then the theory contains negative-norm states. On 37 The Dutch Hendrik Antoon Lorentz

(1853-1928) and the Danish Ludvig
Lorenz (1829-1891) are different
people. Neither should be confused
with chaos pioneer Edward Norton
Lorenz (1917-2008, Lorenz attractor),
nor with economist Max Otto Lorenz,
(1880-1962, Lorenz curve).

the other hand, one can quantize in a gauge, e.g. radiation gauge,
which yields a theory without negative-norm states, but at the ex-
pense of breaking Lorentz invariance.

Let us consider a theory of scalar electrodynamics, i.e. a complex
scalar field φ(x) which interacts with a photon Aµ(x) and with
itself. The Lagrangian is

L = −1
4

FµνFµν + (Dµφ)∗(Dµφ) − V(φ∗φ) (4.4.1)

where Fµν = ∂µ Aν − ∂ν Aµ and Dµ ≡ ∂µ + iqAµ.38 U(1) gauge 38 If we write φ = 1√
2
(φ1 + iφ2), with

real φ1, φ2 we see the kinetic term here
has the canonical normalization.

invariance implies the fields transform as

φ(x) 7→ eiα(x)φ(x)

Aµ(x) 7→ Aµ(x)− 1
q

∂µα(x) . (4.4.2)

Let us take for the scalar potential

V(φ∗φ) = µ2|φ|2 + λ|φ|4 , with λ > 0 . (4.4.3)

If µ2 > 0 then the quadratic term is a usual mass term, the potential
has a unique minimum, the U(1) symmetry is preserved by the
vacuum, and the physics is that of a massless photon and a massive
complex scalar.

Now consider the case that µ2 < 0. The minima of the potential
(4.4.3) satisfy

|φ0|2 = − µ2

2λ
≡ v2

2
or

φ0 =
v√
2

eiζ0/v , with v > 0 and ζ0 ∈ R .

Without loss of generality, let us choose to expand about the vac-
uum with ζ0 = 0. Then the field can fluctuation in modulus and in
phase

φ(x) =
eiζ(x)/v
√

2
(v + η(x))

Assuming small fluctuations about the VEV, we can expand the
exponential

φ ' 1√
2
(v + η + iζ)

to obtain the Lagrangian

L =
1
2
(∂µη∂µη + 2µ2η2) +

1
2

∂µζ∂µζ − 1
4

FµνFµν + qvAµ∂µζ +
q2v2

2
Aµ Aµ + Lint (4.4.4)

where the last term represents the contributions from λ|φ|4. We
appear to have mass terms for the η and Aµ fields, but none for the
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ζ, the would-be Goldstone bosons. Note the unusual term Aµ∂µζ,
however. We can rewrite the terms containing Aµ and ζ as

q2v2

2

(
Aµ +

1
qv

∂µζ

)(
Aµ +

1
qv

∂µζ

)
.

Then, we can transform gauge, making a very specific choice of
gauge called unitary gauge. We can work with new fields which
differ from the original ones by a gauge transformation, i.e. (4.4.2)
with α(x) = − 1

v ζ(x):

A′µ = Aµ +
1
qv

∂µζ

φ′ = e−iζ/vφ =
1√
2
(v + η) .

We could have begun working in unitary gauge simply by perform-
ing a U(1) gauge transformation at the start which ensured the
fluctuations in φ(x) remained real. The unitary gauge Lagrangian is
L = Lquad + Lint plus an irrelevant constant:39 39 Now dropping the primes from the

Aµ field.

Lquad =
1
2
(∂µη∂µη + 2µ2η2) − 1

4
FµνFµν +

q2v2

2
Aµ Aµ

The photon now has a mass, m2
A = q2v2. There is a massive scalar40 40 the Higgs boson for this theory

m2
η = −2µ2 = 2λv2. The Goldstone mode ζ has been “eaten” to

become the longitudinal polarization of the Aµ.
The interacting part of the Lagrangian, in unitary gauge is

Lint =
q2

2
Aµ Aµη2 + qmA Aµ Aµη − λ

4
η4 − mη

√
λ

2
η3 .

Feynman rules. . . .

4.5 Nonabelian theories

In the next chapter we come to the full electroweak theory, which
employs the Higgs mechanism to break SU(2)L ×U(1)Y down to
U(1)EM in order to give mass to the weak gauge bosons. In the
examples sheets you will consider other gauge theories, e.g. where
SU(2) is broken to U(1).

Usually the symmetry breaking follows a similar pattern to that
seen in § 4.2: the potential V is minimized when some components
of the scalar field φ are nonzero. This breaks a symmetry G of the
Lagrangian. The difference is that G is a gauge symmetry, so that φ

is coupled to a gauge field through the covariant derivative

Dµφ = (∂µ + igta Aa
µ)φ .

The steps of § 4.4 are repeated, taking care with the noncommuting
generators ta.

In the examples sheet you consider not only the case where
the scalar field transforms in the fundamental (2-dimensional)
representation of SU(2) (where ta = σa/2), but also where φ is in
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the adjoint (3-dimensional) representation. A convenient explicit
matrix representation of the generators in this latter case is given by

(ta)jk = −iεajk .



Electroweak theory

The electroweak theory is attributed primarily to Steven Wein-
berg and Abdus Salam with important work earlier by Sheldon
Glashow. The goal here is to construct a gauge theory for the weak
interactions of Nature utilizing the Higgs mechanism to give the
weak gauge bosons mass. Throughout this chapter we will make
a number of choices in order to construct a theory which is capable
of describing experimental data. One could write down consistent
field theories making different choices, but then these would likely
give predictions which contradict existing measurements.

5.1 Gauge theory

We work with the direct product of SU(2) × U(1).41 This gauge 41 We probably should not say that we
have a unified theory of electroweak in-
teractions, since we have to introduce 2

gauge couplings. It is at most a unified
framework.

symmetry will be broken by the Higgs mechanism in order to ex-
plain how the weak gauge bosons become massive.

Introduce a scalar field (the Higgs field) in the doublet represen-
tation of SU(2) with a U(1) (hyper)charge 1

2 . Under SU(2)×U(1)
gauge transformations

φ(x) 7→ eiαa(x)τa
eiβ(x)/2φ(x) (5.1.1)

with the SU(2) generators τa = σa

2 . In the unbroken theory, we
would have 3 + 1 massless gauge bosons. Let the scalar acquire a
VEV, without loss of generality choose

φ0 =
1√
2

(
0
v

)
.

This VEV breaks the SU(2)L × U(1)Y symmetry down to only a
U(1)EM: the theory is still invariant under (5.1.1) with α1 = α2 = 0
and α3(x) = β(x).

The covariant derivative for the electroweak theory is

Dµφ =
(

∂µ + igWa
µτa + i

2 g′Bµ

)
φ (5.1.2)

The Wa
µ are the three SU(2) gauge bosons and Bµ is the U(1)Y

gauge boson. The part of the electroweak Lagrangian concerned
solely with the gauge and scalar fields is then

L = −1
4

TrFW
µνFW,µν − 1

4
FB

µνFB,µν + (Dµφ)†(Dµφ)− µ2|φ|2 − λ|φ|4
(5.1.3)
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where the SU(2) and U(1) field strength tensors are42 42 Using f abc = εabc in the fundamental
representation of SU(2).

FW,a
µν = ∂µWa

ν − ∂νWa
µ − gεabcWb

µWc
ν

FB
µν = ∂µBν − ∂νBµ .

Spontaneous symmetry breaking is assumed to occur, letting µ2 =

−λv2 < 0.
As in § 4.4, the Higgs VEV generates mass as follows. From the

term in the Lagrangian (Dµφ)†(Dµφ) we have

1
2
(0, v)

(
−igWa

µτa − i
2

g′Bµ

)(
igWaµτa +

i
2

g′Bµ

)(
0
v

)

=
1
2

v2

4

[
g2(W1)2 + g2(W2)2 + (−gW3 + g′B)2

]
(5.1.4)

This term in the Lagrangian evidently generates 3 mass terms. Let
us define 4 new gauge boson fields in terms of the linear combina-
tions which appear above (as well as one which doesn’t). Let

W±µ =
1√
2

(
W1

µ ∓ iW2
µ

)
Z0

µ =
1√

g2 + g′2

(
gW3

µ − g′Bµ

)
Aµ =

1√
g2 + g′2

(
g′W3

µ + gBµ

)
(5.1.5)

Then (5.1.4) endows these fields with with masses mW = vg/2 and
mZ = v

√
g2 + g′2/2. Corresponding to the Aµ field, we have the

massless photon mγ = 0 of electromagnetism.
The mixing of the SU(2) and U(1) gauge bosons is governed by

the weak mixing angle, or the Weinberg angle, θW defined by(
Z0

A

)
=

(
cos θW − sin θW

sin θW cos θW

)(
W3

B

)
(5.1.6)

and

cos θW =
g√

g2 + g′2
, sin θW =

g′√
g2 + g′2

In terms of the Weinberg angle, mW = mZ cos θW .43 43 Experimentally, mW = 80.385(15)
GeV and mZ = 91.1876(21) GeV, while
mγ < 10−18 eV.

J Beringer et al. Review of Particle
Physics (RPP). Phys. Rev., D86:010001,
2012

5.2 Coupling to matter

Now we discuss how fermions participate in electroweak inter-
actions. We explicitly deal with lepton interactions in this section
although the general steps are the same for quarks. However, addi-
tional ingredients are necessary in the latter case, so we defer some
of those details to § 5.3.

In terms of the physical gauge bosons in the spontaneously broken theory the covariant derivative may
be written

Dµ = ∂µ + igWa
µTa + ig′YBµ

= ∂µ +
ig√

2

(
W+

µ T+ + W−µ T−
)
+

igZµ

cos θW

(
cos2 θW T3 − sin2 θWY

)
+ ig sin θW Aµ(T3 + Y)
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where T± = T1 ± iT2. We identify Aµ as the photon, so to identify the physical couplings to fermions,
e.g. the electron, we write

Q = T3 + Y is the U(1)EM charge matrix

e = g sin θW is the electron charge (magnitude). (5.2.1)

Therefore

Dµ = ∂µ +
ig√

2

(
W+

µ T+ + W−µ T−
)
+

igZµ

cos θW

(
T3 − sin2 θW Q

)
+ ieAµQ (5.2.2)

In the Standard Model, the left-handed components of leptons
and quarks transform in the fundamental representation of SU(2)L.
The corresponding generators are related to the Pauli matrices
Ta = τa = σa/2. Let us introduce a doublet to describe the left-
handed electron and electron neutrino

L(x) =

(
νe(x)
eL(x)

)
(5.2.3)

where eL(x) = 1
2 (1− γ5)e(x). Guided by experiment, we do not

couple the right-handed components of the electrons to the weak
bosons. This means that R(x) = eR(x) transforms trivially under
SU(2)L, or that it transforms in the trivial representation where the
generator is T = 0. At this stage in the discussion we as-

sume that the neutrinos are massless
and strictly left-handed. This assump-
tion was consistent with experimental
results until 1998-2001 when neutrino
oscillations were conclusively ob-
served. We will return to a discussion
of how to amend the Standard Model
to account for neutrino oscillations
later, but for most purposes we can
still treat the neutrinos as massless in
this course.

We know that the electron has a negative electric charge and that
the neutrinos are neutral:

QL(x) =

(
0 0
0 −1

)
L(x) and QR(x) = −R(x)

From this we can infer the hypercharges from Q = T3 + Y as

T = 1
2 ⇒ Q = τ3 + Y so Y = − 1

2 for L(x)

T = 0 ⇒ Q = 0 + Y so Y = −1 for R(x)

With these assignments, we can use (5.2.2) to write the lepton-
gauge boson part of the electroweak Lagrangian as

Llept = L̄ i/D L + R̄ i/D R . (5.2.4)

The electron’s heavy cousins (µ, τ) and their neutrinos can be in-
cluded simply by introducing 2 more SU(2)L doublets and corre-
sponding right-handed fields.

Lepton mass: me(ēLeR + ēReL) cannot appear in L in an SU(2)L×
U(1)Y-invariant way. Instead the Higgs mechanism gives the
charged leptons mass.

Higgs doublet φ with Y = 1
2 .

Llept,φ = −
√

2λe(L̄φR + R̄φ†L)

Given that the symmetry is broken, we can expand about

φ(x) =
1√
2

(
0

v + h(x)

)
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where we implicitly imposed the unitary gauge condition.44 44 We could have chosen φ(x) =
U(x)(0, v + h(x))T/

√
2 for U(x) ∈

SU(2). Then transformation to unitary
gauge is the one which exactly cancels
out the U(x).

Llept,φ = − λe(v + h)(ēLeR + ēReL) = −me ēe− λehēe (5.2.5)

with the electron mass given by the product of the Higgs VEV and
the Yukawa coupling λe.45 45 In tribute to Hideki Yukawa’s the-

ory of nucleons interacting with a
(pseudo)scalar pion, we refer to any
local coupling of fermions to a scalar
field as a Yukawa interaction.

Writing out the covariant derivative (5.2.2), we get the gauge
interactions of the leptons

Lint
lept = gL̄γµτaWa

µL − g′
(

1
2

L̄γµL + R̄γµR
)

Bµ

=
g

2
√

2

(
JµW+

µ + Jµ†W−µ
)
+ ejµEM Aµ +

g
2 cos θW

Jµ
n Zµ . (5.2.6)

We have introduced the charged weak current, the neutral weak
current, and the electromagnetic current:

Jµ = 2L̄γµσ+L = ν̄eγµ(1− γ5)e

Jµ
n = L̄γµ

(
cos2 θWσ3 + sin2 θW

)
L + 2 sin2 θW R̄γµR

=
1
2

[
ν̄eγµ(1− γ5)νe − ēγµ(1− γ5 − 4 sin2 θW)e

]
jµ
EM =

1
2

L̄γµ(σ3 − 1)L − R̄γµR = − ēγµe (5.2.7)

We can include more generations of leptons. In the Standard
Model, the electron has 2 heavy cousins, the µ and the τ.

L1 =

(
νe

e

)
L

L2 =

(
νµ

µ

)
L

L3 =

(
ντ

τ

)
L

R1 = eR R2 = µR R3 = τR

.

Then the coupling of the leptons to the Higgs field is via

Llept,φ = −
√

2
(

λij L̄iφRj + (λ†)ijR̄iφ†Lj
)

. (5.2.8)

The matrix λ may be diagonalized as follows. λλ† and λ†λ Hermi-
tian implies there exist unitary matrices U, S such that

λλ† = UΛ2U† and λ†λ = SΛ2S†

with Λ2 a diagonal matrix possessing nonnegative eigenvalues.46 46 Let v be a normalized eigenvector
of λ with eigenvalue α. λv = αv ⇒
v†λ† = α∗v†. Thus v†λ†λv = |α|2 ≥ 0.

Then λ = UΛS†.
We can transform the lepton fields

Li 7→ UijLj , L̄i 7→ L̄j(U†)ji , Ri 7→ SijRj , R̄i 7→ R̄j(S†)ji

which diagonalizes Llept,φ while leaving Llept (the generalization
of (5.2.4)) invariant. The fact that we can perform this simulta-
neous diagonalization means that the freely propagating leptons
(sometimes called mass eigenstates) are also eigenstates of the weak
Hamiltonian which we will define next chapter. At least within
present experimental precision, the weak interactions do not induce
mixing between lepton generations.
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5.3 Quark flavour

As far as we know, there are 6 quarks in Nature, each its own
“flavour.”47 The weak interactions couple them in pairs through 47 Model builders often investigate the

consequences of adding another pair
of quarks to the Standard Model. So
far, while this addition can sometimes
explain some things, specific models
have so far run into conflict with
experimental data. Nevertheless,
both theorists and experimentalists
actively keep in mind the possibility
of a “fourth generation” of quarks and
leptons. (The number of quark and
lepton doublets should be equal in
order to be free of a gauge anomaly.)

SU(2)L doublets

Qi
L =

(
ui

di

)
L

=

((
u
d

)
L

,

(
c
s

)
L

,

(
t
b

)
L

)
.

Each SU(2)L doublet is assigned hypercharge Y = 1
6 in order that

we get the correct electric charges after the symmetry is broken. We
also have right-handed SU(2)L singlets ui

R = (uR, cR, tR) and di
R =

(dR, sR, bR) with hypercharges 2
3 and − 1

3 respectively. The quarks
couple to the SU(2)×U(1) gauge bosons via the Lagrangian

Lweak
quark = Q̄L i/D QL + ūR i/D uR + d̄R i/D dR . (5.3.1)

The quark-Higgs couplings take the general form

Lquark,φ = −
√

2
[
λ

ij
d Q̄i

Lφdj
R + λ

ij
u εαβQ̄α,i

L φ†βuj
R + h.c.

]
(5.3.2)

where i, j = 1, 2, 3 are generation indices and α, β = 1, 2 are SU(2)
representation indices. In order to have a hypercharge-neutral term
in the Lagrangian coupling Q̄L and uR, we need φ† instead of φ.
Given QL transforms in the fundamental representation of SU(2),
Q̄L transforms in the antifundamental representation obtained by
complex-conjugating the generators of the group in the fundamen-
tal representation. In order to have an invariant Lagrangian, the Q̄L

must be multiplied by a field which transforms in the fundamental
representation. We can achieve this with εαβφ†β = (φc)α, a field
which transforms in the fundamental representation.48 48 The representations of SU(2) are

pseudoreal. “Pseudoreal” means ∃V
such that −(Ta)∗ = V−1TaV; in fact
Vαβ = (iσ2)αβ = εαβ does the job for
the τa.

Note that while Lweak
quark does not respect C and P invariance, the

product CP as well as T are symmetries of Lweak
quark. Lgauge and Lφ

are invariant under each of C, P, and T. Lquark,φ is CP invariant if
and only if

λ
ij
q = (λ

ij
q )
∗ with q = u, d ,

that is, if and only if the matrix elements λ
ij
q are real.

We expect Lquark,φ to contain mass terms for the quarks when we
expand about the Higgs VEV. We find these by diagonalizing the
Yukawa matrices λu and λd:

λu = UuΛuS†
u , λd = UdΛdS†

d

with U, S ∈ U(3) and Λu, Λd diagonal. We transform the quark
fields as

uL 7→ UuuL , dL 7→ UddL , uR 7→ SuuR , dR 7→ SddR (5.3.3)

and the Dirac adjoint fields with the corresponding Hermitian
adjoint matrices. Then we have, for example,

λ
ij
d Q̄i

Lφdj
R 7→ Q̄LφUdΛdS†

dSddR = Q̄LφUdΛddR .
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The terms in Lquark,φ are diagonal in quark generation. Setting the
Higgs field to its VEV φ = 1√

2
(0, v)T we obtain mass terms for the

quarks49 49 Note the quark masses, or equiva-
lently the Yukawa couplings, are not
determined by the Standard Model;
they are free parameters which must
be inferred empirically. The disparate
range of quark masses is something
of a mystery: the up, down, strange,
charm, bottom, and top quark masses
are respectively 0.002, 0.005, 0.1, 1, 4,
170 GeV (precise values first require
specifying a regularization scheme and
renormalization scale).

Lquark,φ|φ=φ0 = −vΛij
d d̄i

Ldj
R − vΛij

u ūi
Luj

R + h.c.

= −∑
i

(
mi

dd̄i
Ldi

R + mi
uūi

Lui
R + h.c.

)
. (5.3.4)

In this basis the mass and Higgs coupling terms in the Standard
Model are C, P, and T invariant.

The transformation (5.3.3) has not left the rest of the Lagrangian
(5.3.1) alone. The latter 2 terms ūRi/DuR and d̄Ri/DdR are invariant,
but Q̄Li/DQL is not. Specifically the interaction terms involving
quarks coupling to W±, the charged currents J± which appear in
the Lagrangian as g

2
√

2
J±,µW±µ are transformed

Jµ,+ = ūi
Lγµdi

L 7→ ūi
Lγµ(U†

uUd)
ijdj

L .

Writing the Lagrangian in terms of fields which have diagonal
mass terms exposes inter-generational couplings between weak
doublets. Thinking in terms of corresponding terms in the quantum
mechanical Hamiltonian, we say the weak eigenstates are linear
combinations of the mass eigenstates.

The mixing matrix is called the Cabibbo-Kobyashi-Maskawa
matrix50 Conventionally it is written 50 Cabibbo first described this mixing

for 2 generations. Kobyashi and
Maskawa generalized to 3 generations
before either the b or t quark were
discovered.

U†
uUd = VCKM =

Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb

 . (5.3.5)

The matrix is not determined by the Standard Model. Its matrix
elements must be determined experimentally.

Not every CKM matrix element is independent. VCKM is uni-
tary, which imposes relations between matrix elements. Further-
more, we can use global phase-invariance of the quark fields to
eliminate seemingly free parameters. We examine two cases here,
those for 2 and 3 generations of quarks.

In the 2 generation case, unitarity alone implies V has 4 free
parameters which can be express as an angle and 3 phases

V =

(
cos θc eiα sin θc eiβ

− sin θc ei(α+γ) cos θc ei(β+γ)

)
.

Terms in the Lagrangian are invariant under global U(1) transfor-
mations of any quark field, say qi

L where qi ∈ {u, d, s, c}:

qi
L 7→ eiαi

qi
L (no sum on i) . (5.3.6)

By transforming one field relative to the others we can eliminate a
phase in V. Since we have 4 fields, we can perform 3 such transfor-
mations to eliminate α, β, and γ.

V =

(
cos θc sin θc

− sin θc cos θc

)
(5.3.7)
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where we call θc the Cabibbo angle.51 The charged weak current is 51 From experiment we infer that
sin θc ≈ 0.22.then

Jµ,+ = cos θcūLγµdL + sin θcūLγµsL − sin θc c̄LγµdL + cos θc c̄LγµsL .

The same arguments apply in the 3-generation case we see in
Nature, with one important difference. A 3× 3 unitary matrix has
9 independent parameters; these can be written as 3 angles and 6

phases. However, we only have 6 quark fields which we can trans-
form as in (5.3.6), only 5 phases can be eliminated (corresponding
to the 5 phase differences). Therefore, the CKM matrix in the Stan-
dard Model has 4 free parameters, which can be written as 3 angles
and 1 phase.

It is usual to follow Wolfenstein and make the following parametriza-
tion instead of using angles. Making the empirical observation that
λ ≡ Vus ≈ sin θc ≈ 0.22� 1 one can expand Experimental (and theoretical) preci-

sion is good enough that in practice
the next order terms are included
and new parameters ρ̄ and η̄, which
include some of these are defined.
Present values for the 4 free param-
eters of the SM are λ = 0.2254(9),
A = 0.80(2), ρ̄ = 0.14(2), and
η̄ = 0.343(15).

VCKM =

 1− λ2

2 λ Aλ3(ρ− iη)
−λ 1− λ2 Aλ2

Aλ3(1− ρ− iη) −Aλ2 1

 + . . . (5.3.8)

Although not exact, this parametrization exposes the interesting
hierarchy observed for the mixing of mass and weak eigenstates.

The fact that VCKM has a phase means that the Yukawa matri-
ces λij cannot be real. Therefore the Standard Model Lagrangian
violates CP.

The flavour mixing described in this section for quarks actually
is relevant for the lepton sector, as neutrino oscillations were dis-
covered at the start of the millennium. These experiments detecting
neutrinos emitted from the Sun or in collisions of cosmic rays in the
Earth’s atmosphere demonstrated that electron neutrinos can turn
into muon neutrinos, etc. Therefore the mass eigenstates and weak
eigenstates are not equivalent for the neutrinos. The mixing matrix
is attributed to Pontecorvo, Maki, Nakagawa and Sakata. Defining
it as the transformation matrix acting on mass eigenstates ν1, ν2, ν3

to give the flavour eigenstates νe, νµ, ντ , U can be parametrized in
terms of 3 angles and up to 3 phases.

U =

 c12c13 s12c13 s13e−iδ

−s12c23 − c12s23s13eiδ c12c23 − s12s23s13eiδ s23c13

s12s23 − c12c23s13eiδ −c12s23 − s12c23s13eiδ c23c13


× diag

(
1, eiα21/2, eiα31/2

)
(5.3.9)

where cij = cos θij and sij = sin θij, for the 3 angles θ12, θ23, and θ13.
If the phase associated with δ is complex, then there is CP violation
in the neutrino sector, as in the quark sector. The phases due to α21

and α31 arise only in the case that neutrinos are Majorana fermions
(see below), because in this case we cannot perform as many of the
phase transformations (5.3.6) as we did for quarks (which are Dirac
fermions). The 3 angles have been measured to be approximately
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θ12 ≈ 35◦ (solar neutrinos), θ23 ≈ 45◦ (atmospheric neutrinos),
and θ13 ≈ 9◦ (reactor neutrinos). The solar neutrino experiments
observed fewer-than-expected electron neutrinos emitted from the
sun. Muon neutrinos are byproducts of cosmic muons decaying in
the atmosphere and are produced isotropically, but detectors mea-
sured a deficit of neutrinos coming through the earth upward vs.
coming downward from the sky; even accounting for interactions
with matter, it was shown that muon neutrinos were oscillating
to another flavour. The reactor experiment at Daya Bay China fol-
lowed by RENO just measured θ13 in 2012. The goal now is to dis-
cover CP violation by inferring a phase for this matrix. Searches are
also underway for lepton flavour violating decays at the LHC.

As alluded to above, there is more than one way to introduce
neutrino mass into the Standard Model. The first possibility is that
neutrinos are Dirac fermions like the charged leptons and quarks.
In this case there must be a right-handed SU(2)L singlet for each
lepton generation

Ni = νi
R = (νeR, νµR, ντR) .

and the lepton-Higgs terms in the Standard Model Lagrangian
(5.2.8) gets modified to become

Llept,φ = −
√

2
(

λij L̄iφRj + λ
ij
ν L̄iφcN j + h.c.

)
. (5.3.10)

where (φc)α = εαβφ†β. Then we proceed by diagonalizing these
terms to obtain the mass eigenstates, yielding a mixing matrix with
3 angles and 1 phase – the θij and δ in (5.3.9). The neutrinos get
mass terms

Lmν ,D = −∑
i

mi
ν(ν̄

i
Rνi

L + ν̄i
Lνi

R) (5.3.11)

just like the charged leptons and quarks.
Since the neutrinos are electrically neutral particles, another

possibility exists: they could be Majorana fermions. These are spin
1
2 fields which are their own antiparticle. The operator annihilating
an antiparticle is identically equal to the operator annihilating a
particle ds(p) = bs(p), so the quantum field is written

ν(x) = ∑
p,s

[
bs(p)us(p)e−ip·x + bs†(p)vs(p)eip·x

]
(5.3.12)

(compare to (3.2.8)). We can show that in this case

νc(x) = Cν̄T(x) = C(C−1ν(x)) = ν(x) (5.3.13)

using (3.3.10) and (5.3.12) and letting the intrinsic parity be 1. Then
the right-handed neutrino field νR(x) = PRν(x) is not an indepen-
dent field; it is the charge-conjugate of the left-handed field

νR(x) = νc
L(x) = Cν̄T

L (x) . (5.3.14)

Therefore Majorana mass terms look like

Lmν ,M = −1
2 ∑

i
mi

ν(ν̄
i,c
L νi

L + ν̄i
Lνi,c

L ) . (5.3.15)
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The factor of 1
2 is introduced implicitly to avoid double-counting

since νL and νc
L are not independent.

Just like (5.3.15), the term (5.3.15) explicitly breaks SU(2)L. We
must find SU(2)L × U(1)Y invariant terms which will generate
(5.3.15) when the Higgs field φ aqcuires a nontrivial VEV. It turns
out that the simplest term (the term with lowest mass-dimension) is

LνφM = −Yij

M
(LiTφc)C(φc T Lj) + h.c. (5.3.16)

This dimension-5 operator is nonrenormalizable. However, as we
will discuss in § 8.1 this is fine as long as we think of the Standard
Model as an effective field theory describing physics at scales well
below the scale of some “new physics.”





Weak decays

In this chapter we investigate several processes which occur due
to the weak interactions. Since the energies and momenta involved
here are much smaller in magnitude than the masses of the Z and
W bosons,52 we do not need to use the full electroweak theory. To a 52 mZ = 91.1876(21) GeV and mW =

80.385(15) GeV. High precision studies
of weak decays typically involve
processes with energy scales of a few
GeV or lower.

high level of precision we can use the Fermi weak Lagrangian. This
is the first time we will see the utility of effective field theory, which
we will address more systematically later in the course.

6.1 Effective Lagrangian

Recall the weak part of the Lagrangian (5.2.6) is

LW =
g

2
√

2

(
JµW+

µ + Jµ†W−µ
)

+
g

2 cos θW
Jµ
n Zµ .

The interaction Hamiltonian HI(t) or V(t) is equal to −
∫

d3xLW .
Thus the S-matrix describing scattering of in-states |i〉 to out-states
| f 〉 is given by the time-ordered exponential

S = T exp
[

i
∫

d4xLW(x)
]

.

For small g we can expand the exponential in a Taylor series. As-
suming we do not have a W or Z in either the initial or final state
then we find

〈 f |S|i〉 = 〈 f |T
{

1− g2

8

∫
d4xd4x′

[
Jµ†(x)DW

µν(x− x′)Jν(x′)

+
1

cos2 θW
Jµ†
n (x)DZ

µν(x− x′)Jν
n(x′)

]
+ O(g4)

}
|i〉 (6.1.1)

having used Wick’s theorem and the following contractions to give
the W and Z propagators T [W−µ (x)W+

ν (x′)] = DW
µν(x − x′) and

T [Zµ(x)Zν(x′)] = DZ
µν(x− x′).

Let us derive an expression for the Z propagator. Focus on the
free part of the electroweak Lagrangian involving the Z boson

Lfree
Z = −1

4
(∂µZν − ∂νZµ)(∂

µZν − ∂νZµ) +
1
2

m2
ZZµZµ

The Euler-Lagrange equation

∂σ

(
∂L

∂(∂σZρ)

)
− ∂L

∂Zρ = 0
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yields

∂σ(∂σZρ − ∂ρZσ) + m2
ZZρ = 0

∂2Zρ − ∂ρ∂ · Z + m2
ZZρ = 0 . (6.1.2)

Take the divergence of the above to find m2
Z ∂ · Z = 0, or ∂ · Z = 0

since m2
Z 6= 0 after spontaneous symmetry breaking.53 Now (6.1.2) 53 Here we see that mZ 6= 0 implies

∂ · Z = 0 in any gauge. This is not so for
massless gauge boson fields Aµ (like
the photon), in which case imposing
∂ · A = 0 is a gauge-fixing condition
(Lorentz gauge).

reads
(∂2 + m2

Z)Zρ = 0 ,

the Klein-Gordon equation.
To find the propagator, introduce an external current jµ which

couples to Zµ. The Lagrangian is appended by jµ(x)Zµ(x) and the
equations of motion (6.1.2) become

∂2Zρ − ∂ρ∂ · Z + m2
ZZρ = −jρ . (6.1.3)

As before, we can apply ∂ρ to the above implying m2
Z ∂ · Z = −∂ · j.

Substituting into (6.1.3) we find

(∂2 + m2
Z)Zµ = −

(
gµν +

∂µ∂ν

m2
Z

)
jν

We can obtain the solution by the method of Green’s functions

Zµ(x) =
∫

d4y DZ
µν(x− y) jν(y)

where

DZ
µν(x− y) =

∫ d4 p
(2π)4 e−ip·(x−y)D̃Z

µν(p) with

D̃Z
µν(p) =

i
p2 −m2

Z + iε

(
−gµν +

pµ pν

m2
Z

)
. (6.1.4)

For reference: The quantum Z field is

Zµ(x) =∑
p,λ

[
aZ(p, λ)εµ(p, λ)e−ip·x

+ a†
Z(p, λ)ε∗µ(p, λ)eip·x

]
with the operators satisfying
[aZ(p, λ), a†

Z(p′, λ′)] = δpp′ δλλ′ and
λ ∈ {−1, 0, 1}. The quantum W field

Wµ(x) =∑
p,λ

[
aW(p, λ)εµ(p, λ)e−ip·x

+ c†
W(p, λ)ε∗µ(p, λ)eip·x

]
where a†

W creates a W+ and c†
W

creates a W−. The polarization
vectors satisfy p · ε(p, λ) = 0 and
ε∗(p, λ) · ε(p, λ′) = −δλλ′ (orthonormal
by convention). Another identity is
obtained by contracting both sides
with the linearly independent set
{p, ε(p, λ)} ,

∑
λ

εµ(p, λ)ε∗ν(p, λ) = −gµν +
pµ pν

m2
Z

.

The discussion above can be repeated for the quantum Wµ field,
using The propagator is the same as (6.1.4) except with mZ replaced
by mW .

At the low energies involved in weak decays of leptons and
quarks (except the top quark), the weak boson masses are much
larger than any combination of initial and final momentum compo-
nents. Therefore the propagators can be approximated

D̃W
µν(p) ' − i

m2
W
(−gµν)

DW
µν(x− y) ' i

m2
W

gµνδ(4)(x− y) (6.1.5)

and similarly for the Z propagator. We see that the propagator re-
duces to a δ-function in spacetime; the weak decays can essentially
be described by a 4-fermion interaction. In this limit, we cease de-
scribing the weak interactions as mediated by a gauge boson, but
instead via a 4-fermion (or a “Fermi”) coupling:

g2

8
Jµ†(x)DW

µν(x− x′)Jν(x′)→ ig2

8m2
W

Jµ†(x)Jν(x′)gµνδ(x− x′) .
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Carrying out the x′-integration in (6.1.1) we can define an effective
weak Lagrangian

Leff
W (x) = − GF√

2

[
Jµ†(x)Jµ(x) + ρJµ†

n (x)Jnµ(x)
]

(6.1.6)

where we define the conventional Fermi coupling GF and ρ-parameter

GF√
2
=

g2

8m2
W

, ρ =
m2

W
m2

Z cos2 θW
. (6.1.7)

In the Standard Model, ρ = 1 + ∆ρ, with ∆ρ ≈ 0.008 due to quan-
tum loops, but of course we must keep an eye out for experimental
hints of physics beyond the Standard Model which might cause ρ to
deviate from its Standard Model value.

We can re-exponentiate the expression for the S matrix element
to see that (6.1.6) can really be interpreted as an interaction La-
grangian

S = T
[

1 + i
∫

d4xLeff
W (x)

]
= T exp

(
i
∫

d4xLeff
W (x)

)
.

We make the following observation here, leaving the conse-
quences to be investigated in the EFT Chapter. Note that the Fermi
coupling GF has dimensions of inverse mass squared to compen-
sate for the 2 extra mass dimensions of the dimension-6 operator
Jµ† Jµ.54 This implies that the effective weak theory is nonrenormal- 54 The fermion fields in the bilinear J

are dimension 3
2 , and

∫
d4xL must be

dimensionless.
izable. We will see later that this is not an impediment to accurate
calculations at scales well-below mW . The appearance of mW in the
denominator of GF indicates that the theory breaks down when en-
ergies reach that scale. Of course we know that we need to use the
full electroweak theory with its propagating W and Z bosons for
physics at the electroweak scale and above.

6.2 Decay rates, cross sections

In the next few sections we will show how to calculate a few quan-
tities which experimentalists can measure. Particle physics exper-
iments are some of the most ambitious and technically complex
activities we undertake. Yet the questions we ask them must be
ultimately be formulated as a counting question: e.g. “Given N
collisions between beams of A and B particles, how many times do
we produce particle X? And then how frequently does X decay to
products α + β + γ?” From these results, we have to precisely de-
termine the free parameters of the Standard Model and/or observe
something unexpected.

Let us consider the second type of question first. The X particle’s
decay rate ΓX is simply a measurement of the number of X decays
per unit time, divided by the number of X particles present. By
convention we quote the result in the rest frame of the X particle,
as the result will change, due to time dilation, in moving reference
frames. Typically X will decay in a variety of ways; it is simplest
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to consider partial decay rates ΓX→ f to specific final states, labelled
by f say, and sum them up to get the total decay rate at the end. A
particle’s lifetime, is the reciprocal τ = 1/Γ.

The relevant quantity is the S matrix for scattering between an
initial state i and final state f . In the case of decays just described,
i = X and we are interested in inelastic scattering, where f has
different particle content than i. In general, the S matrix elements
are given by Dyson’s formula

〈 f |S|i〉 = lim
t±→±∞

〈 f |U(t+, t−)|i〉 (6.2.1)

with

U(t+, t−) = T exp
(
−i
∫ t+

t−
dt′ HI(t′)

)
.

The S matrix can be separated into a boring part (where nothing
happens) and an interesting part: S = 1 + iT. Employing the
principle that momentum is conserved, we factor out an explicit
momentum-conserving Dirac δ-function and define the invariant
amplitudeM through

〈 f |S− 1|i〉 = (2π)4δ(4)(p f − pi)iM f i . (6.2.2)

The probability that we measure i → f is given by the relevant
S matrix element squared over the norm-squared for the initial and
final states

P =
|〈 f |S− 1|i〉|2
〈 f | f 〉〈i|i〉 (6.2.3)

where

〈i|i〉 = (2π)3 2p0
i δ(3)(0) = 2p0

i V

〈 f | f 〉 = ∏
r
(2p0

r V)

where we have resorted to working in finite spatial volume V to
avoid dealing with subtleties regarding with non-normalizable
states.55 The probability the decay will occur is 55 Normally we have an inner product

between momentum eigenstates which
is 〈q|p〉 = (2π)32

√
q0 p0δ(3)(~p−~q). In a

finite volume, e.g. a cubic box V = L3

with periodic boundary conditions, the
momenta are discretized: ~p = 2π~n/L,
n ∈ Z3 and the δ-function becomes

δ
(3)
V (~p−~q) =

1
(2π)3

∫
V

d3x e−i(~p−~q)·~x

=
V

(2π)3 δ~p~q .

P =
|M f i|2
2mV

(2π)4δ(4)
(

pi −∑
r

pr

)
VT ∏

r

1
2p0

r V
(6.2.4)

where the factor VT in the numerator comes from one factor of the
δ-function squared in |〈 f |S|i〉|2.

Experimentalists never measure final state momentum with
infinite precision; momentum is always integrated over some region
corresponding to the precision of the detector or over all possible
values. The integration measure for final state f is

dρ f = (2π)4δ(4)
(

pi −∑
r∈ f

pr

)
∏
r∈ f

(
d3 pr

(2π)32p0
r

)
. (6.2.5)

Therefore we obtain the partial decay rate for i → f by dividing
the probability (6.2.4) by T and integrating over momenta. Since
the number of 1-particle states in the box with momentum in a
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momentum-space volume d3 p is Vd3 p/(2π)3, the volume factors in
numerator and denominator cancel to give us the partial decay rate

Γ(i→ f ) =
1

2m

∫
|M f i|2 dρ f (6.2.6)

and the total decay rate

Γi =
1

2m ∑
f

∫
|M f i|2 dρ f . (6.2.7)
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Figure 6.1: Two bunches of particles,
with densities ρa, ρb and lengths `a, `b
collide with cross-sectional area A.

The companion question to “How often does a particle decay?”
is “How often does a particle collide?” We quantify the answer
by defining the cross section. Imagine 2 bunches of particles (in
particle beams) colliding together (Fig. 6.1). We count the number
of scattering events and divide by the densities and lengths of the
bunches, as well as the cross-sectional area of the collision region.
The cross section is

σ =
# scattering events

ρa`aρb`b A

The cross-section has dimensions of area, and the traditional unit
is the barn. By definition 1 barn = 10−28m2.56 Usually we are more 56 Despite not being able to fit much

farm equipment through a door in
such an area, nuclear physicists at
Purdue University in Indiana must
have been impressed by the size of the
uranium nucleus when they declared,
“Well golly, it’s as big as a barn!”

interested in more specific questions that require the differential
cross sections. Again we need the differential probability per unit
time of an event or transition i → f , this time divided by the flux
of particles through the interaction region. Since the particles are
moving in the lab frame, the prefactor 1/2m in Γ becomes 1/2E for
each bunch of particles.

dσ =
1
F

1
4EaEbV

|M f i|2 dρ f .

The flux F is given by the relative velocities of particles in the 2

bunches, divided by volume V. Thus we find

dσ =
1

|~va −~vb|
1

4EaEb
|M f i|2 dρ f . (6.2.8)

If the discussion in this section seems less than rigorous, you can
take comfort in the fact that even Weinberg resorts to hand-wavery:

In what follows we will instead give a quick and easy derivation of
the main results, actually more of a mnemonic than a derivation,
with the excuse that (as far as I know) no interesting open problems
in physics hinge on getting the fine points right regarding these
matters.57 57 S Weinberg. The Quantum Theory of

Fields, Volume I. Cambridge University
Press, 1995. ISBN 0-521-55001-7
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6.3 µ decay

As a first example let us consider the purely leptonic decay µ →
eν̄eνµ. This proceeds through the weak current derived in § 5.2

Jα = ν̄eγα(1− γ5)e + ν̄µγα(1− γ5)µ + ν̄τγα(1− γ5)τ .

In fact this is the only decay channel for the muon. Since the muon
mass mµ = 105.658367(4) MeV is much less than mW = 80.385(15)
GeV, we may use the effective Lagrangian of § 6.1

Leff
W = − GF√

2

(
Jα† Jα + Jα†

n Jn,α

)
.

µ−

q′ νµ

ν̄e

e−

q

k

p

Figure 6.2: Momentum assignments
for µ− → e− ν̄eνµ.

Sandwiching this between the initial and final states of interest,
assigning labels for the 4 particles’ momenta as indicated in Fig. 6.2,
we find for the invariant amplitude

M = 〈e−(k)ν̄e(q)νµ(q′)|Leff
W |µ−(p)〉

= − GF√
2
〈e−(k)ν̄e(q)|ēγα(1− γ5)νe|0〉〈νµ(q′)|ν̄µγα(1− γ5)µ|µ−(p)〉

= − GF√
2

ūe(k)γα(1− γ5)vνe(q)ūνµ(q
′)γα(1− γ5)uµ(p) . (6.3.1)

In the interest of tidiness, the spin indices on the spinors have not
been written above; however, it may be instructive to include these
when writing down an expression for |M|2. For many observables,
we are not interested in specific spin states for any of the particles.
If we wish to measure the partial decay rate for this channel (in
this example, this is the total decay rate) we should sum over the
final state spins, since any combination will count as a decay in
this channel. We should also average over initial state spins; unmea-
sured, we will not know which spin state decayed.

Therefore, when we take the modulus-squared of the invariant
amplitude, and perform the spin sum/average, we find

1
2 ∑

spins
|M|2 =

1
2 ∑

spins

G2
F

2

[
ūe(k)γα(1− γ5)vνe(q)v̄νe(q)γ

β(1− γ5)ue(k)
]

×
[
ūνµ(q

′)γα(1− γ5)uµ(p)ūµ(p)γβ(1− γ5)uνµ(q
′)
]

=
G2

F
4

Sαβ
1 S2,αβ (6.3.2)

where58 58 Reminders: γµ† = γ0γµγ0, γ5† = γ5,
{γ5, γµ} = 0, and ū = u†γ0.

Sαβ
1 = Tr

[
(/k + me)γ

α(1− γ5)/qγβ(1− γ5)
]

S2,αβ = Tr
[
(/p + mµ)γβ(1− γ5)/q ′γα(1− γ5)

]
. (6.3.3)

having used the expressions (with m2 = p2)

∑
s

us(p)ūs(p) = /p + m and ∑
s

vs(p)v̄s(p) = /p−m . (6.3.4)
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The following useful trace formulae can be shown to be correct

Tr(γµ1 · · · γµn) = 0 for n odd

Tr(γµγνγργσ) = 4 (gµνgρσ − gµρgνσ + gµσgνρ)

Tr(γ5γµγνγργσ) = 4iεµνρσ . (6.3.5)

Therefore

Sαβ
1 = 8

(
kαqβ + kβqα − k · qgαβ + iεαβσρkσqρ

)
S2,αβ = 8

(
pαq′β + pβq′α − p · q′gαβ − iεαβλτ pλq′τ

)
Contracting these together we find59 59 Note εαβσρεαβλτ = 2! εγσρεγλτ .

1
2 ∑

spins
|M|2 = 64G2

F (p · q)(k · q′) . (6.3.6)

We can check that this result is consistent with our physical
intuition in the following limiting case. Consider the final state
where the electron and muon neutrino fly away in the z-direction,
and the electron antineutrino in the −z-direction. In this case

k · q′ =
√

m2
e + k2

z q′z − kz q′z .

Notice that this dot product vanishes, and thus so does |M|2, in the
limit me → 0. We can understand this from conservation of angular
momentum. In this scenario we have two massless, left-handed par-
ticles, each with helicity − 1

2 , moving in the +z-direction along with
one massless, right-handed antiparticle, with helicity + 1

2 , moving in
the −z-direction. The z-components of spin then sum to − 3

2 , which
is not equal in magnitude to the spin of the muon. Therefore, this
scenario is forbidden in the me → 0 limit. For nonzero electron
mass, the left-handed and right-handed components of the electron
are coupled, and this scenario may occur, parametrized by me. We
say such scenarios are helicity suppressed.

Now to obtain the total decay rate we integrate over the final state momenta

Γ =
1

2mµ

∫ d3k
(2π)32k0

∫ d3q
(2π)32q0

∫ d3q′

(2π)32q′0
(2π)4δ(4)(p− k− q− q′)

1
2 ∑

spins
|M|2

=
G2

F
8π5mµ

∫ d3k
k0

d3q
q0

d3q′

q′0
δ(4)(p− k− q− q′) (p · q)(k · q′) . (6.3.7)

Let us introduce Q = p− k and consider the integrals

Iµν(Q) =
∫ d3q
|~q|

d3q′

|~q′| δ(4)(Q− q− q′) qµq′ν . (6.3.8)

Given that Iµν is symmetric under exchange of indices and carries
dimensions of momentum squared, it can have only 2 possible
terms

Iµν(Q) = aQµQν + bgµνQ2 .

Contract both sides of the equation above with gµν and QµQν in
order to find a + 4b = I

2 and a + b = I
4 , where60 60 Tricks used: q2 = q′2 = 0 for

the massless neutrinos; with the
δ-function factor present, we can
replace (q + q′)2 = 2q · q′ by Q2 in
the integrand without changing the
integral.
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I =
∫ d3q
|~q|

d3q′

|~q′| δ(4)(Q− q− q′) . (6.3.9)

Since I is Lorentz-invariant, we can choose the convenient center-of-
mass frame Q = (σ,~0) in which to evaluate it:

I =
∫ d3q
|~q|2 δ(σ− 2|~q|) = 4π

∫ ∞

0
dq δ(σ− 2q) = 2π

and thus a = π
3 and b = π

6 . Inserting these results into (6.3.7) we
find

Γ =
G2

F
3mµ(2π)4

∫ d3k
k0

[
2p · (p− k)k · (p− k) + p · k(p− k)2

]
.

(6.3.10)
By convention, a particle’s decay rate is quoted in its rest frame.

Here p · k = mµE, using E = k0 to represent the electron energy.
Since me

mµ
= 0.0048 � 1, it is sufficient for us to treat the electron in

its massless limit. Using |~k| = E and the fact that the integrand is
independent of the direction of~k, we can express (6.3.10) as

Γ =
2G2

Fmµ

3(2π)3

∫ mµ/2

0
dE E2(3mµ − 4E) =

G2
Fm5

µ

192π3 . (6.3.11)

Note the electron energy must be in [0, mµ

2 ], the extremes of which
correspond to the the neutrinos recoiling back-to-back and the
electron at rest E = 0, and to the electron moving in the opposite
direction to both the neutrinos (momentum conservation implying
E =

mµ

2 ).
This width Γ is actually the total width for the muon, since µ →

eν̄eνµ is the only decay channel. Given a measurement of the muon
lifetime τ = 1/Γ = 2.1970× 10−6 seconds, one infers for the Fermi
coupling GF = 1.1638 × 10−5 GeV2. One-loop corrections affect
GF only at the per-mille level. Experimentally one finds consistent
values for GF inferred from the decays τ → eν̄eντ and τ → µν̄µντ , a
property frequently referred to as lepton universality.

6.4 π decay

Next we consider a decay similar to the muon’s, the decay of the
π− meson to electron and antineutrino. This is similar in that it
proceeds through the charged weak current, with a down quark
and an up antiquark annihilating to a W− boson, which then
promptly decays into electron and antineutrino. The main dif-
ference, is that the d and ū do not ever propagate freely; they are
strongly bound together as a hadronic state, the π− meson, or pion.

W −d

u

e

νe

π−

Figure 6.3: Weak decay of a pion to
electron and antineutrino.

In addition to the leptonic weak current of the last section

Jα
lept = ν̄eγα(1− γ5)e + . . .

we need the hadronic weak current. We will see shortly that it is
convenient to separate the current into terms of definite parity

Jα
had = Vα

had − Aα
had (6.4.1)
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with the vector and axial-vector currents

Vα
had = ūγα(Vudd + Vuss + Vubb) + . . .

Aα
had = ūγαγ5(Vudd + Vuss + Vubb) + . . . .

The ellipses represent the higher-generation terms which do not
play a role in π decay.

The invariant amplitude π−
e−

ν̄e

p
k

q

Figure 6.4: Momentum assignments
for π → eν̄e.

M = 〈e−(k)ν̄e(q)|Leff
W |π−(p)〉

= − GF√
2
〈e−(k)ν̄e(q)|ēγα(1− γ5)νe|0〉〈0|Jα

had|π−(p)〉

=
GF√

2
ūe(k)γα(1− γ5)vνe(q)〈0|Aα

had|π−(p)〉 . (6.4.2)

In the last step, we use the fact that the matrix element of Vα
had

between the QCD vacuum and the parity-odd pseudoscalar meson
vanishes, 〈0|Vα

had|π〉 = 0 because QCD is a P-invariant theory.61 61 To elaborate, we take as an experi-
mental fact that the pion is a spin-0,
parity-odd state (a pseudoscalar me-
son), and of course the vacuum is
parity-even. We showed in § 3.2 how
vector and axial-vector currents un-
der P (3.2.7). Since the initial state
is parity-odd the matrix elements
〈0|Vα

had|π(p)〉 and 〈0|Aα
had|π(p)〉 trans-

form respectively as an axial-vector
and a vector under P. The only phys-
ical variable carrying a Lorentz index
in the QCD part of the problem is the
momentum vector p; we cannot con-
struct an axial vector. Therefore vector
current matrix element must vanish.

Since QCD is strongly interacting – in fact free quarks are for-
bidden to be free by a mysterious mechanism called confinement
– we cannot perturbative approximate hadronic matrix elements.
Instead, we package our uncertainty into a single dimensionful
parameter called the pion decay constant Fπ , so that62

62 There is an equally prevalent con-
vention for the decay constant in the
literature: f alt

π =
√

2Fπ .

〈0|Vudūγαγ5d|π−(p)〉 = iVud
√

2Fπ pα . (6.4.3)

Pre-emptively using the fact that we know momentum will be
conserved, we write p = k + q, and then

ūe(k)/k = ūe(k)me and /q vνe(q) = 0

(since the neutrino is massless), we have

M = iGFFπmeVudūe(k)(1− γ5)vνe(q) . (6.4.4)

As in § 6.3 we see helicity suppression, this time in all decays since
we have just a 2-body final state, which in the pion rest frame con-
sists of the electron and antineutrino flying away back-to-back. The
decay is suppressed as me → 0 since the final state with net spin-
component equal to 1 in the direction of flight is inconsistent with
the spinless initial state.

The decay rate is an integral over the invariant amplitude squared,
with a sum over the electron and neutrino spins, so we need

∑
spins
|M|2 = 2(GFFπmeVud)

2 Tr
[
(/k + m)(1− γ5)/q

]
(6.4.5)

having used (1− γ5)γµ(1 + γ5) = 2(1− γ5)γµ. We use the follow-
ing trace identities

Tr /k /q = 4 k · q
Tr γ5 /k /q = 0

Tr γµ = Tr γµγ5 = 0
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to write

∑
spins
|M|2 = 8(GFFπmeVud)

2 k · q . (6.4.6)

Therefore the decay rate in the π rest frame is

Γπ→eν̄ =
1

2mπ

∫ d3k
(2π)32k0

d3q
(2π)32q0 (2π)4 δ(4)(p− k− q)∑

spins
|M|2

= (GFFπmeVud)
2 1

4π2mπ

∫ d3k
E|~k|

δ(mπ − E− |~k|)(E + |~k|)|~k| .

We used the fact we are working in the π rest frame. Performing
the integration over ~q yields q = (|~k|,−~k) so that k · q = E|~k|+ |~k|2
(E = k0). Next we use the composition rule for the δ-function:
δ( f (k)) = ∑i δ(k− ki

0)/| f ′(ki
0)|, where ki

0 are the roots of f (k) = 0.
In this case

k0 =
m2

π −m2
e

2mπ
and f ′(k0) = 1 +

k0

E
so

Γπ→eν̄ = (GFFπmeVud)
2 1

4π2mπ

∫ ∞

0

4πk2dk
E

(E + k)
δ(k− k0)

1 + k0
E

=
G2

FF2
πV2

ud
4π

m2
e mπ

(
1− m2

e

m2
π

)2

. (6.4.7)

A similar calculation for π → µν̄µ yields

Γπ→µν̄ =
G2

FF2
πV2

ud
4π

m2
µmπ

(
1−

m2
µ

m2
π

)2

. (6.4.8)

One can take the ratio where the least well-known quantities cancel

Γ(π → eν̄e)

Γ(π → µν̄µ)
=

m2
e

m2
µ

(
m2

π −m2
e

m2
π −m2

µ

)2

= 1.28× 10−4 . (6.4.9)

Experimentally, the ratio is measured to be 1.23× 10−4, exposing
quantum effects arising from loop diagrams. In this case virtual
photon effects need to be included in order to agree with experi-
ment.

6.5 K0 − K̄0 mixing

Kaons are pseudoscalar mesons containing either a strange quark
or a strange antiquark. The neutral kaons K0 and K̄0 denote mesons
with valence quark content s̄d and d̄s, respectively. (In addition to
the valence quarks familiar from simple quark models, there are
quark-antiquark pairs popping in and out of existence in the sea of
hadrons. More about this when we discuss QCD.) There are also
charged kaons K+ and K− with an up quark in place of the neutral
kaons’ down quarks.

We knew when we constructed the electroweak Lagrangian
that the W should only couple to left-handed particles and right-
handed antiparticles. Thus, the weak interactions violate P and
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C maximally. However, while CP violation is a possibility in a 3-
flavour theory, as we saw when we introduced the CKM matrix, it
is not necessary that Nature oblige. In fact, it does turn out to be an
empirical fact, evident in the behaviour of neutral kaons, that CP is
violated.

K0 and K̄0 are C conjugates of each other. Here we are more
interest in the combined transformation CP. Under CP we can take
the phases so that, for kaons at rest

ĈP̂|K0〉 = −|K̄0〉 , ĈP̂|K̄0〉 = −|K0〉 . (6.5.1)

Construct CP eigenstates

|K0
1〉 =

1√
2

(
|K0〉 − |K̄0〉

)
, |K0

2〉 =
1√
2

(
|K0〉+ |K̄0〉

)
. (6.5.2)

With these labels, K0
1 is CP-even and K0

2 is CP-odd.
Now let us consider decays of neutral kaons to 2 pions, either

π+π− or π0π0 (Fig. 6.5).63 Recall the pions are pseudoscalar 63 Note this must proceed by the weak
interactions, the only mechanism for
changing quark flavour, strangeness in
this case.

mesons just like the kaons (pseudo = parity-odd, scalar = spin-zero,
i.e. JP = 0−). In the centre-of-mass frame, after the decay the pions
fly away back-to-back. The action of parity is the swap the parti-
cles’ positions and momenta (~x 7→ −~x, ~p 7→ −~p), but the action of
charge conjugation is to swap the particle charges. Thus, if the pi-
ons were classical objects, we would already see that the combined
transformation CP leaves the 2-pion system invariant. Quantum
mechanically, however, we still have to consider whether the 2-pion
wavefunction has orbital angular momentum `. In general, it could
(e.g. as in the strong decay of the vector meson ρ0 → π+π−). How-
ever, since the kaon at rest had no angular momentum, orbital or
spin, then the pions must be in an ` = 0 state. Thus

ĈP̂|π+π−〉 = (−1)`|π+π−〉 , ĈP̂|π0π0〉 = (−1)`|π0π0〉 (6.5.3)

with ` = 0 tells us the final state of K0 → ππ is CP-even. If CP

is respected by the weak interactions, then there should be one
neutral kaon, the K0

1, which can decay into 2 pions (and thus is
short-lived due to the large available phase space) and another
neutral kaon, the K0

2, which cannot decay into 2 pions, but may
decay into 3 pions or other final states (and thus is longer-lived).

d π−

π+

K0

u

d

us

d

d

us

π0

π0
u

K0

Figure 6.5: Decay of K0 to π+π− (top)
and to π0π0 (bottom).

Experimentally, it is true that there are 2 neutral kaons, K0
S

and K0
L which respectively have short (0.89 × 10−10 s) and long

(5.18× 10−8 s) lifetimes. However, occasionally one sees K0
L → ππ.

Quantifying the relative likelihoods of the relevant decays, define
the ratios

η+− =
〈π+π−|HW |K0

L〉
〈π+π−|HW |K0

S〉
, η00 =

〈π0π0|HW |K0
L〉

〈π0π0|HW |K0
S〉

. (6.5.4)

Experimentally it is found that η+− = η00 = 2.28 × 10−3. We
can conclude the weak interactions violate CP. However, there
are 2 possible ways: direct CP violation of the underlying s → u



60

transition (due to a complex phase in the CKM matrix), or indi-
rect CP violation due to a K0 turning into a K̄0 before decaying (or
vice versa). It is the latter effect which turns out to be responsible
here. This oscillation between the 2 weak eigenstates is due to loop
effects, the dominant ones given by the so-called box-diagrams
shown in Figure 6.6. s

s

d

d

W WK0 K̄0

u, c, t

u, c, t

s

s

d

d

K0 K̄0

W

W

u
,c

,t

u
,c

,t

Figure 6.6: K0 − K̄0 mixing in the
Standard Model occurs at loop level,
via these “box” diagrams.

Given this apparent violation of CP, we must assume the states
which propagate (the mass eigenstates) are combinations of the CP

eigenstates:

|K0
S〉 =

1√
1 + |ε1|2

(
|K0

1〉+ ε1|K0
2〉
)

|K0
L〉 =

1√
1 + |ε2|2

(
|K0

2〉+ ε2|K0
1〉
)

. (6.5.5)

with the εk complex in general.
Under the mild assumptions: (1) that KS and KL are linear com-

binations of K0 and K̄0 alone and not additional, excited states; (2)
that we can ignore details of the strong interactions in considering
the mixing; then the Wigner-Weisskopf approximation is that as
they propagate, the KS and KL states will be an oscillating mixture
of weak eigenstates:

|KS(t)〉 = aS(t)|K0〉 + bS(t)|K̄0〉
|KL(t)〉 = aL(t)|K0〉 + bL(t)|K̄0〉 . (6.5.6)

Using Heisenberg’s prescription for time-evolution: |ψ(t)〉 =

exp(−iHt)|ψ(0)〉 so that i(d/dt)|ψ(t)〉 = H|ψ(t)〉, the time-
dependent coefficients in (6.5.6) obey

i
d
dt

(
a
b

)
=

(
〈K0|H′|K0〉 〈K0|H′|K̄0〉
〈K̄0|H′|K0〉 〈K̄0|H′|K̄0〉

)(
a
b

)

=

(
R11 R12

R21 R22

)(
a
b

)
. (6.5.7)

The Hamiltonian H′ is the weak Hamiltonian at next-to-leading
order in perturbation theory:

H′ = HW −∑
n

HW |n〉〈n|HW
En −m0 − iε

(6.5.8)

with m0 being the unperturbed mass of the neutral kaons (any
splitting due to this mixing at next-to-leading order). Writing H′

this way essentially represents the processes depicted in the box
diagrams (Fig. 6.6) as a local ∆(strangeness) = 2 interaction.64 64 As before, the large mass of the

W means that low energy processes
appear to be governed by local inter-
actions. It also can be shown that the
dominant contribution comes from the
top quark in the loop, and mt = 173
GeV.

Since kaons do not oscillate indefinitely, but decay in finite time,
the matrix R in (6.5.7) is not Hermitian. We can write it as the com-
bination of Hermitian and antihermitian matrices, R = M − i

2 Γ,
where M is referred to as the mass matrix and Γ as the decay ma-
trix, and both M and Γ are Hermitian. Commonly one refers the the
dispersive and absorptive parts of the matrix R, given respectively
by

M12 =
1
2
(R12 + R∗21) and Γ12 = i(R12 − R∗21) .
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Under CPT, Θ̂H′Θ̂−1 = H′†. For kaons at rest we can take
T̂|K0〉 = |K0〉 and T̂|K̄0〉 = |K̄0〉, i.e. time reversal does nothing
to a free particle in its rest frame. So under CPT Θ̂|K0〉 = −|K̄0〉
and Θ̂|K̄0〉 = −|K0〉. This means the diagonal matrix elements of R
must be equal:

R11 = 〈K0|(Θ̂−1Θ̂); H′(Θ̂−1Θ̂)|K0〉 = 〈K̄0|H′†|K̄0〉∗ = R22 (6.5.9)

where the complex conjugation appeared due to the anti-linearity
of Θ̂.

CPT-invariance leaves R12 and R21 unconstrained. If T-invariance
were respected (which, by the CPT theorem, implies CP would be
conserved) then T̂H′T̂−1 = H′† and

R12 = 〈K0|T̂−1T̂; H′T̂−1T̂|K̄0〉 = 〈K̄0|H′|K0〉 = R21 . (6.5.10)

We will see next that R12 6= R21 and thus CP must be violated.
By design (from (6.5.2) and (6.5.5)) the (unnormalized) eigen-

vectors of R corresponding to |KS〉 and |KL〉 are respectively (1 +

ε1,−1 + ε1)
T and (1 + ε2, 1− ε2)

T in the |K0〉, |K̄0〉 basis, with cor-
responding eigenvalues denoted MS − i

2 ΓS and ML − i
2 ΓL.65 Know- 65 The states evolve in time (in the rest

frame) as |KS,L(t)〉 = exp(−i(MS,L −
i
2 ΓS,L))|KS,L(0)〉

ing these are the eigenvectors (be definition of the short and long
states) allows us to determine ε1 and ε2 in terms of the matrix ele-
ments of R. To save some work, let us assume ε1 = ε2 = ε (which
turns out to work) and abbreviate 1 + ε = p and 1− ε = q. Then by
construction the following similarity transformation diagonalizes R

1
2pq

(
q −p
q p

)(
R11 R12

R21 R11

)(
p p
−q q

)

Requiring this to be equal to diag(MS − i
2 ΓS, ML − i

2 ΓL) implies
that R12q2 = R21 p2 or

ε =

√
R12 −

√
R21√

R12 +
√

R21
. (6.5.11)

Thus we see that if CP were a good symmetry, and consequently
R12 = R21, then ε would vanish and the CP eigenstates K1 and K2

would not mix.
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K0 K+

π− π0

η

π+

K− K̄0

Figure 7.1: Meson octet. Particles
on the same horizontal line have the
same strangeness; those with the same
charge along the diagonal; those with
the same isospin component I3 are
aligned vertically.

n p

Σ− Σ0

Λ

Σ+

Ξ− Ξ0

Figure 7.2: Baryon octet, axes as in
Fig. 7.1.

Finally we come to the strong interactions. The existence of quarks
as constituents of protons, neutrons and other subatomic parti-
cles grew out of idea that the particles could be grouped together
based on observed similarities. By analogy with SU(2) spin dou-
blets representing the two spin components of nonrelativistic spin- 1

2
fermions, proton and neutron were supposed to be the isospin com-
ponents (I(p)

3 = + 1
2 and I(n)3 = − 1

2 , respectively) of an isospin
symmetry group SU(2)I . The fact that the proton and neutron have
slightly different masses (differing by about 1 MeV) suggests that
isospin is slightly broken. Interactions between protons and neu-
trons (and each other) could be described by exchange of pions.
The three pions, π+, π0, π−, transform as an SU(2)I triplet.

The discovery of “strange” particles necessitated extending the
isospin group to “flavour” SU(3) or SU(3)F. This symmetry is not
as good a symmetry – the mass-splittings between strange and
nonstrange particles is usually of order a few hundred MeV. Nev-
ertheless the observed particles fell into groups which could be
understood as multiplets of SU(3)F, for example the octet of pseu-
doscalar mesons (Fig. 7.1), the octet of spin- 1

2 baryons (Fig. 7.2), and
the decuplet of spin- 3

2 baryons (Fig. 7.3). These principles led to the
successful prediction of the triply-strange Ω− baryon.

The success of SU(3)F led to the hypothesis that the many
hadrons were composites of 3 fundamental particles, the u, d, and
s quarks. The up and down quarks were assigned isospin ± 1

2 re-
spectively, with no strangeness, while the strange quark carried no
isospin and has strangeness −1, unfortunately, in order to coincide
with the definition of strangeness earlier assigned to the hadrons.66 66 Thus Murray Gell-Mann and

Kazuhiko Nishijima join Benjamin
Franklin in the ranks of accidentally
saddling us with a minus sign associ-
ated with a charge carrier.

In this quark model, the baryons are bound states of 3 quarks, and
the mesons bound states of quark plus antiquark. In order to give
the hadrons their observed masses, the up quark must have electron
charge + 2

3 while the down and strange quarks have electron charge
− 1

3 .
The quark model as described has two obvious problems. The

first is in describing the ∆++ baryon. The charge implies it consists
of 3 up quarks. The fact that the spin of the ∆++ is 3

2 implies the
3 quarks have their spins aligned. However if both the spin and
flavour degrees-of-freedom for the 3 quarks are identical, then
its wavefunction appears totally symmetric. The solution of this
problem is to suppose the existence of another quantum number; in
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this case it was called colour. Then the up quarks in the ∆++ could
be in an antisymmetric combination of red-green-blue. Following
the colour analogy, antibaryons are said to be a combination of
cyan-magenta-yellow.

∆− ∆0 ∆+ ∆++

Ω−

Σ∗− Σ∗0 Σ∗+

Ξ∗− Ξ∗0

Figure 7.3: Baryon decuplet, axes as in
Fig. 7.1.

The second problem is that not all combinations of quarks are
seen in nature. For example, we do not see any experimental ev-
idence for free quarks or diquarks (qq). Quarks seem to exhibit a
phenomenon called confinement. That is only “colourless” states,
such as red+green+blue baryons or red+cyan mesons can exist as
observable initial or final states. The search for a precise explana-
tion for or understanding of confinement is an ongoing one.

7.1 QCD Lagrangian

The modern description of the strong interactions builds upon the
early quark model. As with the weak and electromagnetic forces,
the strong force between quarks is mediated by gauge bosons, the
gluons. The need for 3 colours implies the gauge group should
be SU(3)C (the subscript just distinguishes the gauge symmetry
from the approximate global symmetry SU(3)F). By analogy with
quantum electrodynamics, the theory of the strong interactions is
called quantum chromodynamics.

The QCD Lagrangian is packaged to look just like the QED La-
grangian

LQCD = −1
4

Fa,µνFa
µν + ∑

f
q̄ f (i /D−m f )q f (7.1.1)

where Dµ = ∂µ + igAa
µTa. The Ta are the generators of SU(3) in

the fundamental representation, and satisfy [Ta, Tb] = i f abcTc. They
are related to the Gell-Mann matrices: Ta = 1

2 λa. 67 The eight gauge 67 Here are the Gell-Mann matrices:

λ1 =

0 1 0
1 0 0
0 0 0

 λ2 =

0 −i 0
i 0 0
0 0 0


λ3 =

1 0 0
0 −1 0
0 0 0

 λ4 =

0 0 1
0 0 0
1 0 0


λ5 =

0 0 −i
0 0 0
i 0 0

 λ6 =

0 0 0
0 0 1
0 1 0


λ7 =

0 0 0
0 0 −i
0 i 0

 λ8 =
1√
3

1 0 0
0 1 0
0 0 −2


The completely anti-symmetric
structure constants are: f 123 = 1,
f 458 = f 678 =

√
3

2 , f 147 = f 165 =

f 246 = f 257 = f 345 = f 376 = 1
2 ; those

not related to these by permutation of
indices are zero.

field Aa
µ transform in the adjoint representation of SU(3) and have

field strength tensor

Fa
µν = ∂µ Aa

ν − ∂ν Aa
µ − g f abc Ab

µ Ac
ν .

7.2 Renormalization

The idea of renormalization is presented more thoroughly in the
Advanced Quantum Field Theory course, and the renormaliza-
tion group is most clearly introduced in the context of statistical
field theory. Nevertheless, we give a very brief review here because
the behaviour of the strong coupling constant under renormaliza-
tion has a greater impact than for the couplings in the electroweak
theory. This is simply due to the fact that the strong coupling con-
stant is numerically much larger, and therefore its “running” under
renormalization is more consequential. The discussion here follows
§9.2 of Georgi’s book.68 68 H Georgi. Weak interactions

and modern particle theory. Ben-
jamin/Cummings, 1984. ISBN 0-
8053-3163-8

Say we have a Lagrangian which contains a set of coupling con-
stants gi. For massless QCD we have only one coupling; each quark
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mass introduced may be considered here as another coupling. For
each of these, we need a physical or derived quantity g0

i in order
to define the renormalized theory; for example the physical ob-
servable could be a scattering amplitude, or it could be a derived
quantity like a bare coupling in a regularized Lagrangian. We then
need to calculate an expression for each of the g0

i . While it is possi-
ble to do this nonperturbatively and numerically using a spacetime
lattice regulator, here we consider performing a perturbative calcu-
lation. Thus we find a function G0

i (g(µ), µ) for each g0
i which is a

power series in renormalized couplings g(µ) = {gj(µ)}.69 Clearly 69 For brevity we use the subscriptless
g(µ) to denote the set of running
couplings.

this depends on the particular value of the renormalization point
µ we choose. Our renormalization condition consists of demand-
ing for a given µ that the set of gj(µ) are such that our expression
G0

i (g(µ), µ) is equal to the observed (or deduced) quantities

g0
i = G0

i (g(µ), µ) . (7.2.1)

The renormalization group is concerned with how the renormal-
ized couplings {gj(µ)} change as we vary the renormalization point
µ. It is common to talk about a β-function corresponding to each
coupling; the name just comes from the definition

β j(g(µ), µ) = µ
d

dµ
gj(µ) . (7.2.2)

Since physical quantities and bare parameters g0
i do not depend on In so-called mass-independent renor-

malization schemes, the β-function
does not depend explicitly on µ:
β(g(µ)). These are often convenient
schemes in which to work. However
in problems involving several mass
scales, one is sometimes forced to
work in a mass-dependent scheme.

µ, we find upon differentiating (7.2.1)

µ
d

dµ
G0

i (g(µ), µ) =

(
µ

∂

∂µ
+ β j

∂

∂gj

)
G0

i (g(µ), µ) = 0 . (7.2.3)

In AQFT, you saw that one can derive similar equations for renor-
malized Green’s functions, in which case one has to also include
effects due to the anomalous dimensions of the fields in the theory.
Equations of this type are called Callan-Symanzik equations.

In this Chapter on QCD, we are concerned with the running of
the QCD couping g. Again in the AQFT course, you may in the end
repeat the calculation which earned Gross, Wilczek, and Politzer
the Nobel Prize: the one-loop determination of the QCD β-function

µ
d

dµ
g(µ) = β(g(µ)) = bg3 + O(g5) . (7.2.4)

It was remarkable at the time that the coefficient

b = − 1
16π2

(
11− 2

3 NF
)

,

for QCD with NF flavours of quarks, is negative.70 In fact, the β- 70 Here is a minus sign we can be
grateful for!function for simple (single-coupling) nonabelian gauge groups

generically has a negative 1-loop contribution

β(g) = −β0
g3

16π2 + O(g5) . (7.2.5)
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Assuming the gauge field couples to the fermions ψ f ( f for flavour)
through covariant derivatives Dµψ f = (∂µ + igAa

µta
f )ψ f , with

generators which satisfy [ta
f , tb

f ] = i f abctc
f , and that the coupling

treats left-handed and right-handed components equally, then the
coefficient is determined solely by group theory:

β0 =
11
3

C − 4
3 ∑

f
Tf

where C and Tf are determined from

f acd f bcd = Cδab and Tr(ta
f tb

f ) = Tf δab .

For SU(N), C = N. If the fermions transform in the fundamental
representation of the gauge group, as the quarks do in QCD, then
Tf =

1
2 .

Although there are 6 quarks (as far as we know), the number
of active quarks depends on the energy scale at which we wish to
calculate. Since the top quark is so massive, it is not treated as an
active quark flavour for energies well below 173 GeV, so we would
use the N f = 5 β-function. Similarly, if we were interested in the
physics of a few 100 MeV, we should use the N f = 3 β-function.
Matching between QCD with different numbers of active quark
flavours is something which requires care when working at higher-
than-leading order.

In analogy with the fine structure constant of QED, it is conve-
nient to introduce

αs =
g2

4π
; (7.2.6)

however in QCD we call this (as well as g) the strong coupling.
Multiplying (7.2.5) by 2g and neglecting higher orders, we have

µ
dαs

dµ
=

dαs

d log µ
= − β0

2π
α2

s .

This is easily integrated∫ αs(µ)

αs(µ0)

dαs

α2
s

= − β0

2π

∫ µ

µ0

d log µ

to give

αs(µ) =
2π

β0

1
log µ

µ0
+ 2π

β0 αs(µ0)

. (7.2.7)

Let us define an energy scale71 ΛQCD by 71 Not a cut-off!

log µ0 −
2π

β0 αs(µ0)
= log ΛQCD

Then ΛQCD is the scale µ = ΛQCD at which αs diverges:

αs(µ) =
2π

β0 log(µ/ΛQCD)
. (7.2.8)

Note that αs(µ) decreases for increasing µ. If we look at a process
where µ corresponds a physical energy, then we see that the QCD
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coupling gets weaker as the energy gets higher. This phenomenon
is called asymptotic freedom and is just what was sought after to
describe high energy data at the time.

In the absence of quark masses, LQCD is scale invariant; the cou-
pling g, and hence αs are dimensionless. The fact that a charac-
teristic scale emerges from the quantized theory, ΛQCD, is referred
to as dimensional transmutation. This characteristic scale gives a
good estimate for the border between perturbative and nonper-
turbative physics. Unfortunately the scale is regularization and
renormalization-scheme dependent. For QCD, one might estimate
ΛQCD ≈ 200− 500 MeV.

7.3 e+e− → hadrons

Since QCD is asymptotically free, we are able to treat the strong
coupling constant αs as small for high energy processes. Neverthe-
less the phenomenon of confinement complicates things: since free
quarks are never seen, we must always confront or circumvent the
nonperturbative dynamics of hadronization, the process by which
would-be free quarks create jets of quarks, anti-quarks, and gluons
in order to end up with colour-singlet final states.

Here we consider the annihilation of electron and positron to a
virtual photon which then decays to hadronic states. We are inter-
ested in the fully-inclusive cross section for e+e− → hadrons; that is
we simply count up all events which result in hadronic final states.

γ
q

q̄e+

e− p1

p2
k2

k1

q

Figure 7.4: Electron-positron annihila-
tion to quark-antiquark.

At the level of the Standard Model fields, we know that the lead-
ing process is e+e− → γ∗ → q̄q (Fig. 7.4). The invariant amplitude
for quarks with electric charge Q is

M = (−ie)2Q ūq(k1)γ
µvq(k2)

−igµν

q2 v̄e(p2)γ
νue(p1) .

Neglecting quark and electron masses, summing over quark spins,
and averaging over e± spins we obtain

1
4 ∑

spins
|M|2 =

e4Q2

4q4 Tr (/k1γµ/k2γν) Tr
(
/p1γµ/p2γν

)
=

8e4Q2

q4 [p1 · k1 p2 · k2 + p2 · k1 p1 · k2]

= e4Q2(1 + cos2 θ) .

In the last step we worked in the center-of-momentum frame, writ-
ing p1 = (|~p|,~p), p2 = (|~p|,−~p), k1 = (|~k|,~k), k2 = (|~k|,−~k), then
using momentum conservation we have q = (2|~p|, 0), |~k| = |~p|.
Finally the angle θ is defined so that p1 · k1 = p2 · k2 = q2

4 (1− cos θ)

and p1 · k2 = p1 · k2 = q2

4 (1 + cos θ).
The differential cross section, from (6.2.8), is

dσ =
1

|~v1 −~v2|
1

4p0
1 p0

2

d3k1

(2π)32k0
1

d3k2

(2π)32k0
2
(2π)4δ(4)(q− k1 − k2)

1
4 ∑

spins
|M|2 .
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In the center-of-momentum frame |~v1 −~v2| = 2 and we may write

dσ =
e4Q2

2(2π)2q4 d3k δ(
√

q2 − 2|~k|)(1 + cos2 θ) .

Finally we can integrate over the magnitude |~k| to get

dσ

dΩ
=

α2Q2

4q2 (1 + cos2 θ)

where we have used the fine structure constant of QED α = e2/4π.
Performing the angular integration we obtain

σ(e+e− → q̄q) =
4πα2

3q2 Q2 . (7.3.1)

Since experimental uncertainties cancel when ratios of cross sec-
tions are measured, we note that the calculation for the cross sec-
tion for e+e− annihilation to muons proceeds just as above, except
that Q = 1, with the result

σ(e+e− → µ+µ−) =
4πα2

3q2 . (7.3.2)

Now back to hadronic final states. Let X represent specific final
state content, whether there be 2 or more hadrons. Then the invari-
ant amplitude can be written

MX =
e2

q2 〈X|J
µ
h |0〉v̄e(p2)γµue(p1)

where the hadron current Jµ
h = ∑ f Q f q̄ f γµq f is sandwiched be-

tween X and the QCD vacuum. This matrix element cannot be
determined perturbatively. The inclusive cross section must now
include a sum over all possible final states X, including integrals
over the momenta and spins involved:

σ(e+e− → had) =
1

8p0
1 p0

2
∑
X

1
4 ∑

spins,pX

(2π)4δ(4)(q− pX)|MX |2 .

Now we introduce a useful quantity, the hadronic spectral den-
sity

ρ
µν
h (q) = (2π)3 ∑

X,pX

δ(4)(q− pX)〈0|Jµ
h |X〉〈X|Jν

h |0〉 . (7.3.3)

At the end of this section, we will attempt to give some insight into
what this function represents. For the time being, we simply make
use of its properties. Since ρ

µν
h (q2) is symmetric under exchange of

indices µ ↔ ν, it must be a linear function of gµν and qµqν. Further-
more, the Ward identity which is a consequence of the conserved
current implies qµρµν = qνρµν = 0, fixing the coefficient between the
two terms. Finally, we note that since the states labelled by X have
positive energy, ρ

µν
h (q) should vanish for q0 < 0. Thus we have

ρ
µν
h (q) = (−gµνq2 + qµqν)Θ(q0)ρh(q2) . (7.3.4)
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Using this in the expression for |MX |2, we find

1
4 ∑

X,spins
(2π)4δ(4)(q− pX)|MX |2 =

2πe4

q4

(
q2 p1 · p2 + 2q · p1 q · p2

)
ρh(q2) = 2πe4ρh(q2) .

Therefore

σ(e+e− → had) =
16π3α2

q2 ρh(q2) . (7.3.5)

In general ρh(q2) is a complicated nonperturbative function. However for the cross section σ(e+e− →
hadrons) we include every hadronic state in the final state. Since the only way to produce hadrons is
to produce quark-antiquark pairs, we make the assumption that a sum over all hadronic states can be
replaced by a sum over all possible states involving quarks, antiquarks, and gluons

∑
X∈hadrons

|X〉〈X| = ∑
X∈q,q̄,g states

|X〉〈X| .

This assumption leaves out any details involving hadronization, and assumes the dynamics of the vir-
tual photon decay can be separated from the strong dynamics involved in hadronization. Having both
hadron and quark-level descriptions of the process is referred to as quark-hadron duality.

Making this assumption, then the spectral density can be written

ρ
µν
h (q) = Nc ∑

f
Q2

f

∫ d3k1

(2π)32k0
1

d3k2

(2π)32k0
2
(2π)4δ(4)(q− k1 − k2)Tr

[
(/k1 + m f )γ

µ(/k2 −m f )γ
ν
]∣∣∣

k2
1=k2

2=m2
f

To solve the integral, we follow similar steps as those we took to evaluate (6.3.8), the difference being
that we presently keep k2

1 = k2
2 = m2

f > 0. Writing the integral as Iµν = Aqµqν + Bgµν, contract both sides
with gµν and qµqν to obtain 2 equations which can be solved for A and B. Integrands are simplified by
making pre-emptive use of the δ-function: e.g. q2 = (k1 + k2)

2 = 2m2
f + 2k1 · k2. Ultimately one should

find

Iµν =
∫ d3k1

k0
1

d3k2

k0
2

δ(4)(q− k1 − k2)k
µ
1 kν

2

∣∣∣∣
k2

1=k2
2=m2

f

= π Θ(q0)Θ(q2 − 4m2
f )

×

√√√√1−
4m2

f

q2

[
q2 + 2m2

f

3q2

(
−gµνq2 + qµqν

)
+

1
2

gµνq2

]
.

Inserting this into the expression for the spectral density function we find

ρh(q2) =
Nc

12π2 ∑
f

Q2
f Θ(q2 − 4m2

f )

(
1−

4m2
f

q2

) 1
2 q2 + 2m2

f

3q2 .

In the limit of massless quarks this reduces to

ρh(q2) =
Nc

12π2 ∑
f

Q2
f .

Then we find the leading order cross section is

σLO(e+e− → hadrons) = Nc
4πα2

3q2 ∑
f

Q2
f (7.3.6)

as expected. Experimentally, it is useful to measure ratios of cross sections such as

R =
σ(e+e− → hadrons)

σ(e+e− → µ+µ−)
(7.3.7)
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At leading order we find

RLO = Nc ∑
f

Q2
f =


2
3 Nc uds light
10
9 Nc udsc light

11
9 Nc udscb light

(7.3.8)

6 46. Plots of cross sections and related quantities

σ and R in e+e− Collisions
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Figure 46.6: World data on the total cross section of e+e− → hadrons and the ratio R(s) = σ(e+e− → hadrons, s)/σ(e+e− → µ+µ−, s).
σ(e+e− → hadrons, s) is the experimental cross section corrected for initial state radiation and electron-positron vertex loops, σ(e+e− →
µ+µ−, s) = 4πα2(s)/3s. Data errors are total below 2 GeV and statistical above 2 GeV. The curves are an educative guide: the broken one
(green) is a naive quark-parton model prediction, and the solid one (red) is 3-loop pQCD prediction (see “Quantum Chromodynamics” section of
this Review, Eq. (9.7) or, for more details, K. G. Chetyrkin et al., Nucl. Phys. B586, 56 (2000) (Erratum ibid. B634, 413 (2002)). Breit-Wigner
parameterizations of J/ψ, ψ(2S), and Υ(nS), n = 1, 2, 3, 4 are also shown. The full list of references to the original data and the details of
the R ratio extraction from them can be found in [arXiv:hep-ph/0312114]. Corresponding computer-readable data files are available at
http://pdg.lbl.gov/current/xsect/. (Courtesy of the COMPAS (Protvino) and HEPDATA (Durham) Groups, May 2010.)

Figure 7.5: Experimental data for R =
σ(e+e− → hadrons)/σ(e+e− → µ+µ−)
vs.
√

s =
√

q2. The green dashed line
is a naive quark model prediction,
which exhibits the same plateaux
predicted by (7.3.8). The small jumps
as the charm and bottom quarks
become active, as well as the general
agreement for Nc = 3 mark early
success for QCD. (Source: Particle
Data Group)

Figure 7.5 (made by the Particle Data Group72) shows experi- 72 J Beringer et al. Review of Particle
Physics (RPP). Phys. Rev., D86:010001,
2012

mental data for R. Naturally our simple calculation does not take
into account the strongly interacting resonances which show up as
peaks for

√
q2 =

√
s < 10 GeV, nor the Z peak at

√
s = mZ = 92

GeV. Nevertheless one can see the green line, which only slightly
improves on our calculation, agrees well with the nonresonant
contributions to R: for Nc = 3, the plateaux described by (7.3.8)
follow the data. In particular, notice how the plateau to the left of
the charmonium resonances J/ψ and ψ(2S) corresponding to 3 ac-
tive flavours gives way to the 4-flavour plateau for

√
s > 4 GeV.

The jump is smaller as the b quark becomes active, but nevertheless
agrees with the data above the bottomonium (Υ) threshold.

The solid red line in Fig. 7.5 is a 3-loop perturbative QCD predic-
tion. We can write the result as

σ =
4πα2

3q2

[
Nc ∑

f
Q2

f K
(

αs,
q2

µ2

)
+
(

∑
f

Q f

)2
L
(

αs,
q2

µ2

)]
(7.3.9)

where at the leading order we have K(0, q2/µ2) = 1 and L(0, q2/µ2) =

0. One-loop diagrams for e+e− → q̄q (Fig. 7.6) are ultraviolet-finite,
but diverge in the infrared, where the loop momentum becomes
vanishingly small. If one uses dimensional regularization in 4 + 2ε

dimensions one finds

K1−loop
q̄q

(
αs,

q2

µ2

)
=

CFαs(µ2)

2π

[
− 2

ε2 −
3
ε
− 8 + O(ε)

]
H(ε) (7.3.10)

where CF = 4
3 and H(ε) = 1 + O(ε).

γ
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g

γ
q
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e−

g

γ
q

q̄e+

e−

g

Figure 7.6: One-loop contribution to
e+e− → q̄q.

The infrared divergence in (7.3.10) is cancelled by contributions
from tree-level diagrams for e+e− → q̄qg (Fig. 7.7)

Ktree
q̄qg

(
αs,

q2

µ2

)
=

CFαs(µ2)

2π

[
2
ε2 +

3
ε
+

19
2

+ O(ε)

]
H(ε) . (7.3.11)
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Adding (7.3.10) and (7.3.11) to the leading order piece, we find

K
(

αs,
q2

µ2

)
= 1 +

αs(µ2)

π
. (7.3.12)

At higher order

K
(

q2

µ2 , αs

)
= 1 +

αs(µ2)

π
+

α2
s (µ

2)

π2

[
1.99− 0.11n f −

β0

4
log

q2

µ2

]
γ

q

q̄e+

e−

g

Figure 7.7: Electron-positron annihila-
tion to quark-antiquark-gluon.

The function L(αs, q2/µ2) enters only at O(α3
s ), beginning with

Feynman diagrams with 3 gluons in X.

Let us conclude this section by revisiting the spectral density
function ρh(q2) (7.3.4) and understanding its analytic structure. We
first introduce the two-point function

Π̃µν
h (x, y) = i〈0|T Jµ(x)Jν(y)|0〉 (7.3.13)

where T stands for time-ordering. We will soon use its Fourier
transform

Πµν
h (q) =

∫
d4(x− y) eiq·(x−y) Π̃µν

h (x, y) . (7.3.14)

Using Lorentz invariance and the Ward identity that qµΠµν
h = 0 =

qνΠµν
h ,

Πµν
h (q) = (−gµνq2 + qµqν)Πh(q2) . (7.3.15)

γγ
e

Figure 7.8: Vacuum polarization in
QED.

First let us look at the 1-loop vacuum polarization of the photon
in QED (Fig. 7.8) which is given in terms of a similar two-point
function. Here explicit calculation is possible and sheds some light
on the relation between nonanalyticities and physics. A standard
but lengthy calculation (e.g. see §7.5 of Peskin and Schroeder73) 73 M E Peskin and D V Schroeder. An

Introduction to Quantum Field Theory.
Addison Wesley, 1995. ISBN 0-201-
50397-2

gives

Π(q2)−Π(0) = −2α

π

∫ 1

0
dx x(1− x) log

(
m2

e
m2

e − x(1− x)q2

)
.

Since x(1− x) ≤ 1
4 , Π(q2) has has a branch cut for real q2 > 4m2

e .
Physically, this branch cut corresponds to the creation of a real
electron-positron pair. We will see similar analytic structure in the
hadronic contribution Πh(q2) to the vacuum polarization of the
photon (Fig. 7.9).

γγ X

Figure 7.9: Hadronic contribution to
photon vacuum polarization.

How are the two-point function Πh(q2) and spectral density ρh(q2) related? Through the Källén-Lehmann
representation. Most textbook derivations are carried out in the context of scalar field theory, looking at
〈0|T φ(x)φ(y)|0〉. We have to do a little extra work here for the vector current correlator. Considering the
term in Πµν

h (x, y) (7.3.13) where x0 > y0, we insert a complete set of momentum eigenstates which can
be created/annihilated by Jh, and we use the momentum operator P̂ as the generator of translations to
write Jh(x) = eiP̂x Jh(0)e−iP̂x. The result is

∑
X,pX

i〈0|Jµ
h (x)|X〉〈X|Jν

h (y)|0〉 = i ∑
X,pX

e−ipX ·(x−y)〈0|Jµ
h (0)|X〉〈X|Jν

h (0)|0〉

= i
∫ d4 p

(2π)3 e−ip·(x−y)ρ
µν
h (p) (7.3.16)
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using the spectral density function introduced early in this section, (7.3.3). We find a similar term for the
y0 > x0 term in (7.3.13). Let us now set y = 0, without loss of generality. Using these expressions in
(7.3.14), multiplying both sides of (7.3.15) by −gµν + qµqν

q2 and using (7.3.4), we find

Πh(q2) =
∫ d4 p

(2π)3

∫
d4x eiq·x i

[
Θ(x0)e−ip·x + Θ(−x0)eip·x

]
Θ(p0)ρh(p2)

=
∫ d4 p

(2π)3

∫ ∞

0
ds δ(s− p2)

∫
d4x eiq·x i

[
Θ(x0)e−ip·x + Θ(−x0)eip·x

]
Θ(p0) ρh(s) (7.3.17)

In the second step, we introduce the integration variable s along with appropriate δ-function in order to
utilize the Feynman propagator and then to carry out the x-integration.

Recall the Feynman propagator for a scalar with mass m is 74 74 See, e.g. D. Tong’s QFT notes. We
implicitly define

D(x− y; m2) =
∫ d3 p

(2π)32p0 e−ip·(x−y)

with p0 =
√
~p2 + m2.

i∆F(x; m2) = iD(x; m2)Θ(x0) + iD(−x; m2)Θ(−x0)

= i
∫ d3 p

(2π)32p0

[
Θ(x0)e−ip·x + Θ(−x0)eip·x

]∣∣∣
p0=
√

~p2+m2

= i
∫ d4 p

(2π)3 Θ(p0)δ(p2 −m2)
[
Θ(x0)e−ip·x + Θ(−x0)eip·x

]
=
∫ d4 p

(2π)4
e−ip·x

m2 − p2 − iε
(7.3.18)

with ε > 0. Using this in (7.3.17) and carrying out the x integration,
we find

Πh(q2) =
∫ ∞

0
ds

ρh(s)
s− q2 − iε

. (7.3.19)

Just like we saw with the 1-loop QED vacuum polarization
Π(q2), Πh(q2) has a branch cut on the positive part of the real
q2-axis, reaching the origin in the case of massless quarks. Else-
where in the complex q2 plane, Πh(q2) is analytic. One can make
use of this analyticity to carry out perturbative QCD calculations
with large space-like momenta, −q2 � 1, in which case the running
coupling becomes small and the quarks and gluons are highly vir-
tual. Then one can analytically continue the result to large time-like
momenta for the e+e− → hadrons predictions.

C2

A

B

C1

q2

Figure 7.10: Analytic structure of
Πh(q2) and contours of integration.
C2 is a circular contour of radius q̃2; A
and B are the points q̃2 + iδ and q̃2 − iδ

.

The final ingredient is to solve for ρh(q2) in terms of the quantity
computed perturbatively. From (7.3.19) and the analyticity of ρh(s)
for large s, we can infer that the discontinuity in Πh(q2) across
the branch cut along the real q2 axis is as for the complex natural
logarithm, 2πi times the residue:

ρh(q̃2) =
1

2πi

[
Πh(q̃2 + iδ)−Πh(q̃2 − iδ)

]
with small δ > 0. Taking the contour C1 as shown in Figure 7.10, we
can use the fundamental theorem of calculus to write

ρh(q̃2) =
1

2πi

∫
C1

dz
d
dz

Πh(z) .

Defining D(−z) = −z d
dz Πh(z),

ρh(q̃2) =
1

2πi

∫
C2

dz
z

D(−z)

=
1

2π

∫ π−δ

−π+δ
dθ D(q̃2eiθ)
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having used Cauchy’s theorem for the integral over the closed
contour C1 + C2. It is D(−q2) which is calculated in the asymptotic
space-like limit −q2 � 1 and assumed is valid for all |q2| � 1 off of
the branch cut.

7.4 Deep inelastic scattering
This section is not being lecture this
year (2015).Highly energetic scattering of electrons off of hadronic targets,

especially the proton, revealed that hadrons have structure; they
are composed of more fundamental particles. The data obtained in
early experiments exhibited scaling behaviour which hinted that at
high energies the hadronic constituents, at the time called partons,
were weakly interacting. As the previous sections described, the
asymptotic freedom of nonabelian gauge theories can explain this
behaviour. In fact, one of the successes of QCD has been to justify
the parton model and to reliably calculate corrections to it.

X

e−

γ

p
p′

θ

P

H

e−

q

Figure 7.11: Deep inelastic scattering of
an electron off of a hadron H.

Let us consider an electron with 4-momentum p scattering off
of an initial state hadron H with 4-momentum P and mass M.
The electron scatters at an angle θ relative to ~p and has final 4-
momentum p′. The hadron breaks up in to a final state X in which
we have no detailed interest. The scattering amplitude is given by

M = (ie)2ū(p′)γµu(p)
−gµν

q2 〈X|J
ν
h |H(P)〉 . (7.4.1)

The differential cross section can be given using (6.2.8). Writing
the flux factor in the hadron rest frame as |~ve −~vH |/V = 1/V we
have

dσ =
1

4EM
d3 p′

(2π)32p′0 ∑
X
(2π)4δ(4)(q + P− pX)

1
2 ∑
spins
|M|2 .

We can separate the amplitude-squared into lepton and hadron
factors

1
2 ∑

spins
|M|2 =

e4

2q4 Lµν〈H(P)|Jµ
h |X〉〈XJν

h |H(P)〉

where, treating the electron as massless,

Lµν = ∑
spins

ū(p)γµu(p′)ū(p′)γνu(p) = Tr(/pγµ/p′γν)

= 4(pµ p′ν + p′µ pν − gµν p · p′) (7.4.2)

and

Wµν
H (q, P) =

1
4π ∑

X
(2π)4δ(4)(q + P− pX)〈H(P)|Jµ

h |X〉〈XJν
h |H(P)〉 .

(7.4.3)
If the hadron has spin, as it does in most such experiments, then
one should also include in (7.4.3) an average over initial state spins.
We now have the following expression for the differential cross
section

E′
dσ

d3 p′
=

1
8(2π)2EM

e4

q4 LµνWµν
H .



74

We can ascertain the Lorentz structure as in previous cases, using
dimensional analysis, parity, and current conservation to write

Wµν
H =

(
−gµν +

qµqν

q2

)
W1 +

(
Pµ − P · q

q2 qµ

)(
Pν − P · q

q2 qν

)
W2 .

W1(ν, Q2) and W2(ν, Q2) are Lorentz scalars and depend on Q2 =

−q2 = 2p · p′ = 2EE′(1− cos θ) ≥ 0 and ν = P · q. If we treat
the final state X as an effective particle with 4-momentum PX =

(
√

M2
X + ~P2

X , ~PX), then PX = P + q implies M2
X = (P + q)2 and

hence M2
X ≥ M2. Therefore, we see

0 ≤ Q2 ≤ 2ν .

Use qµLµν = qνLµν = 0 in writing

LµνWµν
H = 8p · p′W1 + 4(2p · P p′ · P − M2 p · p′)W2

= 4Q2W1 + 2M2(4EE′ −Q2)W2 .

Now let us focus on very high energies, taking Q2 → ∞ and ν→ ∞,
introducing the following dimensionless variables which stay finite:

x =
Q2

2ν
, and y =

ν

ME
; (7.4.4)

these are both bounded to be in the interval [0, 1]. Then

LµνWµν
H ∼ 8EM

(
xyW1 +

1− y
y

νW2

)
.

Performing the angular p′-integration

d3 p′ → 2πE′2d(cos θ)dE′ = πE′dQ2dy = 2πE′νdx dy

and the differential cross section can be written

dσ

dx dy
=

4πα2

Q2 2ME
[

xy2F1(x, Q2) + (1− y)F2(x, Q2)
]

(7.4.5)

where F1(x, Q2) = W1(ν, Q2) and F2(x, Q2) = νW2(ν, Q2) are the
dimensionless structure functions for the hadron H.

It is useful to introduce light cone variables. For V and U arbi-
trary 4-vectors, we introduce components along the forward/backward
light-cone in the ~e3-direction

V± = V0 ± V3

along a 2-vector representing the transverse components

V⊥ = (V1, V2) .

In terms of the light-cone variables the scalar product is

V ·U =
1
2
(V+U− + V−U+) − V⊥ ·U⊥
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which implies the Minkowski metric tensor has components g+− =

g−+ = 1
2 , g++ = g−− = 0, and gij = −δij for i, j = 1, 2. A Lorentz

boost in the ~e3-direction transforms V± 7→ e±θV± and V⊥ 7→ V⊥.
Let us choose a frame where P⊥ = q⊥ = 0.75 Then 75 Choose the rest frame of the hadron,

and rotate so that the photon is mov-
ing in the ~e3-direction.Q2 = − q+q−

ν =
1
2
(
q+P− + q−P+

)
.

Now we take the deep inelastic limit to be q− → ∞ with q+ =

O(P+), so that

x ∼ − q+

P+
and ν ∼ q−P+

2
.

In this frame we have

W+−
H (q, P) = −W1 +

(
P− P · q

q2 q
)2

W2

= −W1 +

(
M2 +

ν2

Q2

)2

W2

≡ FL(x, Q2) . (7.4.6)

In the deep inelastic limit

FL(x, Q2) ∼ −F1(x, Q2) +
1

2x
F2(x, Q2) . (7.4.7)

The other longitudinal components of WH are also related to the
longitudinal structure function

W++
H (q, P) =

(q+)2

Q2 FL(x, Q2)

W−−H (q, P) =
(q−)2

Q2 FL(x, Q2) .

This must be the case in order to satisfy current conservation (via
the Ward identities).

X ′

e−p
p′

θ

P

H

e−

q

k

k + q

Figure 7.12: Deep inelastic scattering
of an electron off of a parton inside
hadron H.

Let us use assume that the photon emitted by the electron inter-
acts with a single constituent of the hadron, and that this electro-
magnetic interaction is unaffected by the strong interactions. This
approximation is called factorization, and the leading-order model
we construct here is the parton model. Historically this model pre-
ceded the acceptance of QCD as the correct theory of the strong
interactions, but now we can associate the partons with quarks76 76 The gluons are electrically neutral, so

they do not interact directly with the
photon.

and even use QCD to calculate higher-order corrections to the par-
ton model.

In the parton model, we assume that the virtual photon strikes a
single constituent, carrying momentum k before the interaction and
k + q after (Fig. 7.12). Now the sum over final states can be written
as the number of ways a parton could have been struck. Assuming
the partons (indexed by f ) are massless, we have

∑
X

= ∑
X′

∑
f

1
(2π)3

∫
d4k̃ Θ(k̃0) δ(k̃2) ∑

q spins
.
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Writing the electromagnetic current as Jµ
h = ∑ f Q f q̄ f γµq f the

hadronic contribution to the cross section becomes

Wµν
H (q, P) = ∑

f

∫
d4k Tr

[
Wµν

f ΓH, f (P, k) + W̄µν
f Γ̄H, f (P, k)

]
(7.4.8)

with
Wµν

f = W̄µν
f =

1
2

Q2
f γµ(/k + /q)γµδ((k + q)2) .

ΓH, f (P, k)βα = ∑
X′

δ(4)(P− k− pX′)〈H(P)|q̄ f α|X′〉〈X′|q f β|H(P)〉

Γ̄H, f (P, k)βα = ∑
X′

δ(4)(P− k− pX′)〈H(P)|q f α|X′〉〈X′|q̄ f β|H(P)〉

with α, β spin indices.

γµγλγν = sµνλκγκ + iεµνλκγκγ5

with
sµνλκ = gµλgνκ + gµκ gνλ − gµνgλκ .

Also noting in the DIS limit /k + /q ∼ 1
2 q−γ+ then

γjγ+γi = γ+(δji + iεjiγ5) .

Define functions for the integrals

1
2

∫
d4k δ

(
k+

P+
− x
)

Tr
(

γ+ΓH, f (P, k)
)

= P+q f (x)

1
2

∫
d4k δ

(
k+

P+
− x
)

Tr
(

γ+Γ̄H, f (P, k)
)

= P+ q̄ f (x) . (7.4.9)

Putting the pieces together we arrive at

F1(x, Q2) ∼ 1
2 ∑

f
Q2

f

[
q f (x) + q̄ f (x)

]
. (7.4.10)

A similar calculation for FL(x, Q2) shows that it vanishes in the
deep inelastic limit, which implies that

F2(x, Q2) ∼ 2xF1(x, Q2) (7.4.11)

a relation first derived by Callan and Gross.
We see in (7.4.10) and (7.4.11) that the parton model predicts

the structure functions F1 and F2 are independent of Q2: they do
not depend on the absolute center-of-momentum energy of the
collision, but only on the ratio x = Q2/2P · q. This prediction
is referred to as Bjorken scaling, and x is often called Bjorken-x.
Figure 7.13 shows a recent compilation of representative data for
the proton’s structure function F2(x, Q2).77 Indeed for a wide range 77 J Beringer et al. Review of Particle

Physics (RPP). Phys. Rev., D86:010001,
2012

of x, the data are relatively independent of Q2 over several orders
of magnitude.

The parton model is justified within QCD by asymptotic free-
dom. The power of QCD comes in using the full theory to calculate
corrections to the leading order parton model description. We will
simply give a schematic outline of what happens in such calcula-
tions.
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18. Structure functions 1

NOTE: THE FIGURES IN THIS SECTION ARE INTENDED TO SHOW THE REPRESENTATIVE DATA.

THEY ARE NOT MEANT TO BE COMPLETE COMPILATIONS OF ALL THE WORLD’S RELIABLE DATA.

Figure 18.8: The proton structure function F
p
2 measured in electromagnetic scattering of electrons and

positrons on protons (collider experiments H1 and ZEUS for Q2 ≥ 2 GeV2), in the kinematic domain of the
HERA data (see Fig. 18.10 for data at smaller x and Q2), and for electrons (SLAC) and muons (BCDMS,
E665, NMC) on a fixed target. Statistical and systematic errors added in quadrature are shown. The data
are plotted as a function of Q2 in bins of fixed x. Some points have been slightly offset in Q2 for clarity.
The H1+ZEUS combined binning in x is used in this plot; all other data are rebinned to the x values of
these data. For the purpose of plotting, F

p
2 has been multiplied by 2ix , where ix is the number of the x bin,

ranging from ix = 1 (x = 0.85) to ix = 24 (x = 0.00005). References: H1 and ZEUS—F.D. Aaron et al.,
JHEP 1001, 109 (2010); BCDMS—A.C. Benvenuti et al., Phys. Lett. B223, 485 (1989) (as given in [66]) ;
E665—M.R. Adams et al., Phys. Rev. D54, 3006 (1996); NMC—M. Arneodo et al., Nucl. Phys. B483, 3
(1997); SLAC—L.W. Whitlow et al., Phys. Lett. B282, 475 (1992).

Figure 7.13: The proton structure
function F2(x, Q2) scaled by an x-
dependent factor 2ix (for the purposes
of plotting). For moderate values of
x, F2 is nearly independent of Q2.
(Source: Particle Data Group)

X ′

e−p
p′

θ

P

H

e−

q

yP

xP

Figure 7.14: Deep inelastic scattering
of an electron off of a parton inside
hadron H.

Consider a structure function F(x, Q2) (the story is the same for
each of them). At next-to-leading order in QCD, we must account
for the fact that the parton will have had an interaction proportional
to αs before being struck by the photon. For example, it could have
radiated a gluon (Fig. 7.14) or it could have been a gluon which
pair-creates a quark-antiquark pair (Fig. 7.15).
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Figure 7.15: Deep inelastic scattering
of an electron off of a parton inside
hadron H.

F(x, Q2) ∼ ∑
i∈{q f ,q̄ f ,G}

∫ 1

x

dy
y

Ci

(
x
y

,
Q2

µ2
F

; αs

)
fi(y, µ2

F) (7.4.12)

where fi(y, µ2
F) is one of {q f (y, µ2

F), q̄ f (y, µ2
F), G(y, µ2

F)}.
F(x, Q2) must be independent of the unphysical factorization

scale µF. Thus, µF
d

dµF
F = 0 implies78

78 We used, for general A, B, the
fact that if µ d

dµ Ai = −AjPji and

µ d
dµ (Ai Bi) = 0 then µ d

dµ Bi = PijBj.

µF
d

dµF
Ci

(
x,

Q2

µ2
F

; αs

)
= −∑

j

∫ 1

x

dy
y

Cj

(
y,

Q2

µ2
F

; αs

)
Pji

(
x
y

; αs

)

µF
d

dµF
fi(y, µ2

F) = ∑
j

∫ 1

y

dz
z

Pij

(y
z

; αs

)
f j(z, µ2

F) . (7.4.13)

These equations are called the Dokshitzer-Gribov-Lipatov-Altarelli-
Parisi (DGLAP), or sometimes just Altarelli-Parisi, equations.





Effective field theory

As we can infer from the preceding chapter, calculations in QCD
are difficult and contain subtleties, even in the perturbative limit.
Solving QCD in the nonperturbative regime is even more difficult.
While numerical methods using lattice field theory yield first prin-
ciples results in some cases, insight and accurate predictions can be
made using a framework called effective field theory.

Effective field theory exploits large separations in energy scales
in order to construct a simpler description of low energy physics.
We already saw a nice example in Fermi’s weak theory, an effective
description of the full electroweak theory, which exploits the large
mass of the W boson to describe weak decays at the scale of a few
GeV and below by local 4-fermion interactions. In that case it was
safe to expand the W propagator

1
p2 −m2

W
≈ − 1

m2
W
− p2

m4
W

+ . . .

since the external momenta involved were small enough that the
nonanalytic structure of the W propagator played a negligible role.

Here we wish to build effective low-energy Lagrangians: a series
of local operators involving only light degrees-of-freedom. There
are several useful reviews of effective field theory (EFT) in the liter-
ature. The one by Georgi79 explains the framework very well. The 79 H Georgi. Effective field theory. Ann.

Rev. Nucl. Part. Sci., 43:209–252, 1993next 2 sections follow lectures by Kaplan.80 Both of those works cite
80 D B Kaplan. Five lectures on effec-
tive field theory. 2005. arXiv:nucl-
th/0501023

other useful references.

8.1 Scaling dimensions of local operators

Since we accept that our effective field theory is valid only up to
some mass scale Λ we cannot use renormalizability as a constraint
to determine which operators can and cannot enter the Lagrangian.
In principle, there are an infinite number of terms which enter. Let
us write the Lagrangian, separating the kinetic energy terms from
the interactions

Leff = Lkin + ∑
n
L(n)int .

Georgi refers to the last term as an infinite “tower of interactions.”
We will see that the infinite height of the tower does not trouble us
if we are simply interested in the view from finite heights.
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Recalling that observables may be computed using path inte-
grals, we can observe from the normalization factor (the partition
function of QFT)

Z =
∫
D(fields) e i

∫
d4xLeff

that the Lagrangian must have mass dimension 4 in order to can-
cel the dimensions of the integration measure.81 Thus we write 81 The dimensional analysis throughout

this chapter relies on using h̄ = c = 1
units. Minor changes are necessary
for other systems of natural units
such as nonrelativisitic natural units
h̄ = 2m = 1.

L(n+4)
int as a sum of dimension-n + 4 operators times dimensionless

coefficients, with the dimensions made correct with factors of Λ

L(n+4)
int = ∑

i

c(n)i
Λn O(n+4)

i .

We need to make a couple assumptions in order to proceed:

1. There are a finite number of parameters for each L(n+4)
int , corre-

spondingly a finite number of independent operators.

2. The coefficients of operators can be written as c(n)
Λn where the

c(n) are dimensionless coefficients, at most of order 1, and Λ
represents some heavy mass scale which is independent of n.

If these assumptions are valid, then we can truncate the tower of
interactions depending on how far and accurately we want to see.
For a given dynamical energy E, contributions to observables from
L(n+4)

int are corrections of order (E/Λ)n. If we desire accuracy of
order ε then we must find the power nε large enough so that(

E
Λ

)nε

≈ ε .

that is,

nε ≈
log(1/ε)

log(Λ/E)
.

We see from this that we must increase nε if we seek greater ac-
curacy (decreasing ε) or if we wish to describe higher energy be-
haviour. We shall see later the important role symmetries play in
further constraining the types of operators which appear in Leff.

Let us consider a real scalar field in 4 dimensions. Let us also
work in Euclidean spacetime where the path integral is well-
behaved. The effective Lagrangian which will describe physics up
to a cutoff scale Λ is generally represented by an infinite number of
terms which can be written82 82 We also assume the theory should be

invariant under φ 7→ −φ.

L =
1
2
(∂φ)2 +

1
2

m2φ2 +
λ

4!
φ4

+
∞

∑
n=1

[
cn

Λ2n φ4+2n +
dn

Λ2n (∂φ)2φ2n + . . .
]

. (8.1.1)

Given that the mass dimension of L is 4 and that of m and ∂µ is
1, the field must carry mass dimension 1. Therefore, as written
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the couplings λ, cn, and dn are dimensionless. Let us assume here
that the theory is perturbative, so that all of these dimensionless
couplings are small.

Correlations functions in terms of path integrals are given by
expressions of the form

〈φ1 · · · φn〉 =
1
Z

∫
Dφ φ1 · · · φn e−S

where S =
∫

d4xL is the Euclidean action and Z =
∫
Dφ e−S. Be-

low we will give 2 arguments justifying an expansion which treats
lower dimension opertors as the most important operators in the
effective field theory expansion, with higher dimension operators
representing small corrections.

−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5
−0.5
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1

Figure 8.1: Radial part of the 4-d
wavelet

φ̃(x) = φk(1− 2k2r2)e−k2r2
.

Consider a specific field configuration φ̃(x) which is localized in
a volume L4 where L ≈ 2π/k, and k is a wavenumber (or momen-
tum). Take the amplitude of the wavelet to be φk, and let us define
the dimensionless amplitude which is the ratio φ̂k = φk/k. For fun,
an example wavelet is given in Figure 8.1.

For such wavelet field configurations we can crudely approxi-
mate the integrals of the terms in the Lagrangian (8.1.1) which sum
to give the Euclidean action. Since the wavelet only has support in a
volume L4 = (2π/k)4 we can estimate

∫
d4x m2φ̃2 ≈ L4m2φ2

k =

(
2π

k

)4
m2k2φ̂2

k∫
d4x (∂φ̃)2 ≈ L4k2φ2

k = (2π)4φ̂2
k(

1
Λ

)2p+q−4 ∫
d4x (∂φ̃)pφ̃q ≈ (2π)4

(
k
Λ

)2p+q−4
φ̂

p+q
k . (8.1.2)

Then for this field configuration, the Euclidean action is given ap-
proximately by

S ≈ (2π)4
{

φ̂2
k

2
+

m2φ̂2
k

2k2 +
λ

4!
φ̂4

k

+ ∑
n

[
cn

(
k
Λ

)2n
φ̂4+2n

k + dn

(
k
Λ

)2n
φ̂2+2n

k + . . .

]}
. (8.1.3)

For this field configuration, its contribution to path integrals be-
comes an ordinary integral over φ̂k. Due to the exponential factor
exp(−S), integrals will be dominated by values of φ̂k which min-
imize S. In the perturbative regime, the quadratic terms in (8.1.3)
are the most important. In the relativistic theories which concern
us here, k � m and the kinetic energy term dominates. Thus S is
minimized for φ̂k ≈ 1/(2π)2 or smaller. Note that this condition is
independent of k.

As k is reduced, the terms in the square bracket of (8.1.3) are
reduced as (k/Λ)2n, hence are called irrelevant, in the sense of the
renormalization group (which is the proper context in which to
view our arguments in this section). Of course some these terms are
likely not to be irrelevant for low energy physics, but we now see
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how to rank them from least to most irrelevant. The mass term is
seen here to be relevant, since it becomes larger in the infrared. The
λφ4/4! term is termed marginal since at leading order we cannot tell
whether it is relevant or irrelevant; quantum loop corrections will
ultimately determine its behaviour.

A more general but less visual way to understand the relative importance of terms in the tower of inter-
actions is to consider scale transformations. Let φ(x) now be an arbitrary field configuration, with action
S(φ(x); m2, λ, cn, dn, . . .). Now consider the family of configurations related by a scale transformation
φξ(x) = φ(ξx). Defining x′ = ξx and φ′(x′) = ξ−1φ(ξx), we have the action for the scaled field as

S(φξ(x); m2, λ, cn, dn, . . .) =
∫

d4x

{
1
2
(∂φ(ξx))2 +

1
2

m2φ2(ξx) +
λ

4!
φ4(ξx)

+ ∑
n

[
cn

φ4+2n(ξx)
Λ2n + dn

(∂φ(ξx))2φ2n(ξx)
Λ2n + . . .

]}

=
∫

d4x′
{

1
2
(∂′φ′(x′))2 +

1
2

m2ξ−2(φ′(x′))2 +
λ

4!
(φ′(x′))4

+ ∑
n

[
cnξ2n (φ

′(x′))4+2n

Λ2n + dnξ2n (∂
′φ′(x′))2(φ′(x′))2n

Λ2n + . . .
]}

. (8.1.4)

Since x′ is just an integration variable, we can identify

S(φ(ξx); m2, λ, cn, dn, . . .) = S(ξ−1φ(x); ξ−2m2, λ, ξ2ncn, ξ2ndn, . . .) . (8.1.5)

Under scaling, we see how each term in Leff behaves. As we take ξ → 0 we expose the infrared “flow”
of the couplings in (8.1.1): φ(x) = eik·x is mapped to φξ(x) = ei(ξk)·x.

We define the scaling dimension of fields and couplings by their
behaviour under scale transformations x′ 7→ ξx. We use square
brackets as a symbol for scaling dimension, so if we say the scaling
dimension of some object y is equal to ∆, that implies:

[y] = ∆ ⇒ y 7→ ξ−∆y . (8.1.6)

In the scalar field example we found [φ] = 1, [m2] = 2, [λ] = 0,
[cn] = [dn] = −2n. What we have seen from the above derivation
is that the scaling dimension is equivalent to the mass dimension
(assuming all factors of Λ have been absorbed back into the cou-
plings). This is a consequence of using h̄ = c = 1. In nonrelativistic
units, the same ideas apply, but the details differ.

8.2 Rayleigh scattering

As a simple example with which we apply these ideas of effective
field theory, let us consider the low energy, elastic scattering of light
off of atoms or molecules. This Rayleigh scattering is usually treated
in classical electrodynamics texts. Here we show that we can get the
main result rather straightforwardly using EFT.

We assume, as is the case with sunlight scattering off of air
molecules in the Earth’s atmosphere, that the energy of the pho-
tons is much less than the smallest atomic or molecular excitation
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energy ∆E:

Eγ � ∆E� r−1
0 � Matom . (8.2.1)

Here we also note that the energy scale needed to probe the size of
the atom83 is much higher than the excitation energy.84 The largest 83 I’m going to stop writing “or

molecule.”
84 Typically ∆E = O(α2me) while
1/r0 = O(αme), where α = e2/4π is
the fine structure constant.

scale in the problem is the atomic mass Matom, hence the atom is
nonrelativistic. In fact we will treat the atom as static, i.e. its velocity
is unchanged, to a very good approximation, by the scattering of
the photon.

In keeping with this, let φ†
v be a field which creates an atom with

4-velocity v; in the atom’s rest frame v = (1, 0, 0, 0). Since the atom
is neutral85 φv does not couple to the photon field Aµ directly, but 85 φv transforms trivially under U(1)EM.

to the field strength tensor Fµν.
Now we are nearly ready to begin constructing the lower floors

of the tower of interactions. There are some simplifying factors
we should consider first, however. We know from the Maxwell
equation(s)-of-motion that ∂µFµν = 0, so we need not include such
terms in our effective Lagrangian. Furthermore, if we insist the
atomic ground state have zero energy in the atom’s rest frame, then
there ∂tφv = 0 or vµ∂µφv = 0. Similarly, using the nonrelativistic
kinetic energy operator, we can infer ∂µ∂µφv = 0.

The last ingredient we need are the scaling dimensions of our
building blocks. We still work in relativistic units, and in the static
limit the atomic mass does not enter anywhere, so the scaling di-
mension is again equal to the mass dimension. Thus [∂µ] = 1. From
the Maxwell Lagrangian LM = − 1

4 FµνFµν and [LM] = 4 we see
[Fµν] = 2. Finally [φv] =

3
2 from considering the atomic wavefunc-

tion resulting from the creation operator φ†
v(x)|0〉 = ΨA(x)|A〉. Tak-

ing nonrelativistic normalization for the states, 〈0|0〉 = 〈A|A〉 = 1
implies

∫
d3x |ΨA|2 = 1, which confirms the dimensions work out as

claimed.
We now can write out the first few terms of the effective La-

grangian for Rayleigh scattering:

Leff = LM + g1 φ†
vφv FµνFµν + g2 φ†

vφv vαFαµ vβFβµ

+ g3 φ†
vφv(vα∂α)FµνFµν + . . . (8.2.2)

Higher powers of v · ∂ yield higher dimension operators, which are
more irrelevant.

Since [Leff] = 4, [g1] = [g2] = −3 and [g3] = −4. Leading
order scattering is governed by the g1 and g2 terms. We have mul-
tiple high energy scales (8.2.1) which we could associate with the
Λ of § 8.1. In the case of leading order scattering, we expect purely
classical scattering, and so the high energy scale making up the di-
mensions would more likely be the inverse atomic size 1/r0 rather
than the excitation energy of the valence electron(s). Therefore we
assume g1 and g2 are O(r3

0), hence we define dimensionless cou-
pling constants a1 = g1/r3

0 and a2 = g2/r3
0, so that

Leff = LM + r3
0(a1 φ†

vφv FµνFµν + a2 φ†
vφv vαFαµ vβFβµ) . (8.2.3)
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The cross section is proportional to the scattering amplitude
squared, i.e. proportional to |〈γ(k′), A|Lint|γ(k), A〉|2, so σ = O(r6

0).
Given that the cross section has dimensions of area, the mismatch
in dimensions must be made up by the only relevant dynamical
energy scale Eγ, so we deduce that

σ ∝ E4
γr6

0 . (8.2.4)

We see that blue light scatters more than red, and with a power law
that agrees with the full derivation in classical electrodynamics.

For higher energy photons, the leading order effective La-
grangian is not sufficient. Effects due to the excitation energies
of the air molecules start to become non-negligible for large enough
Eγ,

σ ∝ E4
γr6

0

(
1 + O

(
Eγ

∆E

))
.

These arguments give a result which agrees with the full classical
calculation, up to constants of proportionality which need to be
determined by knowing the full theory (or perhaps by performing
experiments). In the case of Rayleigh scattering, the effective field
theory calculation has the virtue of being simpler. However, the
real power of EFT comes in being able to make progress when
calculations in the full theory are not possible.

8.3 Chiral Lagrangian

References for this section include 86 as well as the classic papers.87 86 J F Donoghue, E Golowich, and B R
Holstein. Dynamics of the Standard
Model. Cambridge University Press,
1992. ISBN 0-521-47652-6; H Georgi.
Weak interactions and modern particle
theory. Benjamin/Cummings, 1984.
ISBN 0-8053-3163-8; and S Weinberg.
The Quantum Theory of Fields, Volume
II. Cambridge University Press, 1996.
ISBN 0-521-55002-5
87 S R Coleman, J Wess, and B Zumino.
Structure of phenomenological La-
grangians. 1. Phys. Rev., 177:2239–2247,
1969; and C G Callan, S R Coleman,
J Wess, and B Zumino. Structure of
phenomenological Lagrangians. 2.
Phys. Rev., 177:2247–2250, 1969. doi:
10.1103/PhysRev.177.2247

In QCD, it appears that SU(3)F is an approximate global sym-
metry which allows us to classify the light and strange hadrons.
The octet of pseudoscalar mesons have much smaller masses than
the rest of the hadrons. We can understand these particles to be the
Goldstone bosons which arise from the spontaneous breaking of a
larger, chiral symmetry SU(3)L × SU(3)R.88

88 The fact that these mesons have
small rather than zero mass arises
from the small masses of the u, d,
and s quarks, and can be treated as a
perturbation.

Recalling the discussion of § 4.2, we can interpret the Goldstone
bosons as excitations of a specific vacuum configuration φ0 where
the field in a localized volume is transformed away from this vac-
uum to another. In the O(N) model with a spontaneously broken
vacuum φ0 = (0, 0, . . . , v)T , the excitations were those of the form

φ(x) =


π1(x)
π2(x)

. . .
v + σ(x)

 .

We can think of the massless field πj(x) as being localized trans-
formations away from the vacuum φ0. Below we develop a more
general method for describing Goldstone excitations, using group
transformations g̃ ∈ G with g̃ /∈ H.

We proceed following the steps:

1. Goldstone fields should represent physical excitations – we want
them to create/annihilate asymptotic out/in states. Since the
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Goldstone excitations correspond to local fluctuations from one
vacuum to a different vacuum, the fields should correspond to
coordinates in the coset space G/H.

2. The remaining symmetry corresponding to H should be mani-
fest.

3. The effective Lagrangian should be invariant under G.

Our notation below foreshadows what happens in QCD, which
has Lagrangian with chiral symmetry – under separate left- and
right-handed transformations – but has axial-vector combina-
tions broken by a nonzero expectation value for the chiral con-
densate 〈0|q̄q|0〉, leaving a remnant symmetry under vector-like
transformations. (This will be discussed more precisely later.)
Let us denote the generators of the unbroken subgroup H as Va

and the remaining generators of G as Ab (a = 1, . . . , dim G and
b = 1, . . . , dim G− dim H).

Let us write an element of G, g ∈ G as 89 89 Note that this is equivalent to
exp(iγ · A + iδ · V), where γ 6= α
and δ 6= β because the generators gen-
erally do not commute. Nevertheless
we know there do exist γ and δ so
that (8.3.1) holds due to closure of the
Lie algebra of G. In other words, both
(α, β) and (γ, δ) are valid choices for
coordinates on the group manifold.

g = eiα·Aeiβ·V (8.3.1)

Since the Goldstone excitations are local misalignments in group
space (away from the coset eH, where e is the identity of G), they
can be represented by coordinates ξ(x) on the coset space G/H. At
each point we can imagine the excitation as a group transformation
on the vacuum of

eiξ(x)·A . (8.3.2)

The ξ(x) fields will be related (up to a dimensional factor) to the
fields that create/annihilate Goldstone bosons. However it is easier
to make the symmetry properties manifest working with elements
of the group G than of its corresponding algebra.

If we perform a general group transformation g0 ∈ G on our
field

g0eiξ·A = eiξ ′ ·Aeiu′ ·V (8.3.3)

the result being a field with elements in both G/H and H (ξ ′(x)
and u′ depend on ξ(x) and g0). Let us check the behaviour under
group multiplication. If we similarly write

g1eiξ ′ ·A = eiξ ′′ ·Aeiu′′ ·V (8.3.4)

then
g1g0 eiξ·A = eiξ ′′ ·Aeiu′′′ ·V (8.3.5)

where eiu′′′ ·V = eiu′′ ·Veiu′ ·V . We see that choosing to write group
elements as products of elements of G/H and H (8.3.1) allows us to
factorize transformations.

As usual, we assume we are working with orthogonal generators
so that Trtatb ∝ δab. Then the commutator [Vi, Aj] is in the span of
the generators Aj:

[Vi, Aj] ∈ span(A) . (8.3.6)
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This can be checked by showing Tr([Vi, Ab]Vi′) = 0 using the
closure of the subalgebra [Vi, Vi′ ] = i f ii′i′′Vi′′ . Therefore for h =

eiu·V ∈ H,
heiξ(x)·A = eiξ ′(x)·Ah . (8.3.7)

In words, commuting eiξ(x)·A with an element h of the invariant
subgroup only alters the transformation in the coset space, not on
the subgroup manifold due to (8.3.6). Right-multiplying (8.3.7) by
h−1 we get

eiξ ′(x)·A = heiξ(x)·Ah−1 = eiu·Veiξ(x)·Ae−iu·V . (8.3.8)

Now we need to bring in a further symmetry property of QCD.
Here G = SU(3)L × SU(3)R and H = SU(3)F. Sometimes this
is also written H = SU(3)V because the vector symmetries are
preserved while the axial-vector symmetries are broken. Writing the
generators of SU(3)L × SU(3)R as La and Ra, then the generators
of H are Va = 1

2 (La + Ra) with the generators Aa = 1
2 (La − Ra)

broken.90 90 We could use more explicit notation
to emphasize on which part of the
direct product group the generators
act: La = Ta ⊗ 1 and Ra = 1⊗ Ta,
where Ta are generators of SU(3).
With this notation it is clear that
[La, Lb] = i f abc Lc, [Ra, Rb] = i f abcRc,
[La, Rb] = 0.

Consider an automorphism g 7→ R(g) which takes La 7→ Ra and
Ra 7→ La, and hence Va 7→ Va and Aa 7→ −Aa. This is a simple
relabeling of left and right, which should leave the QCD physics
invariant. We will make use of this below.

Let us return to the result of left- multiplying by g ∈ G. From
(8.3.1)

geiξ(x)·A = eiα·Aeiβ·Veiξ(x)·A

= eiξ ′(x)·Aeiβ·V (8.3.9)

where in this instance we write exp(iξ ′(x) · A) as the product of
exp(iα · A) and the result of applying (8.3.8). Applying the auto-
morphism (flipping the sign of A but not V) and in the next line
inverting the result

R(g)e−iξ·A = e−iξ ′ ·Aeiβ·V

eiξ·AR(g−1) = e−iβ·Veiξ ′ ·A (8.3.10)

using R−1(g) = R(g−1). Multiplying the latter lines of (8.3.9) and
(8.3.10) we arrive at

ge2iξ·AR(g−1) = e2iξ ′ ·A . (8.3.11)

Finally, writing using g = eiα·Aeiβ·V and R(g−1) = e−iβ·Veiα·A we
arrive at

e2iξ ′(x)·A = eiα·Aeiβ·Ve2iξ(x)·Ae−iβ·Veiα·A . (8.3.12)

This important results tells us how the field of coset elements trans-
forms under transformations g ∈ G. Note the important plus sign
in the last exponent. If it were a minus sign then we would have
shown exp(2iξ · A) transformed linearly under G (we would have
had a similarity transformation k′ = gkg†.) Of course we want to
describe a theory where this is not the case, so (8.3.12) is appropri-
ate.
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It is conventional to work with dimensionful fields, so let us
introduce a constant F which carries mass dimension 1, so that

ξ(x) · A = ξa(x)Aa =
1
F

Πa(x)ta ≡ 1
F

Π(x) . (8.3.13)

In the case of 3-flavour QCD,91 with quarks transforming in the 91 If one in interested in energies where
strange mesons play no role, one
might work only with 2-flavour QCD
and develop the chiral perturbation
theory of SU(2)-isospin. Mesons
with heavier quarks (e.g. c, b) are too
massive to be treated as approximate
Goldstone bosons.

fundamental representation of SU(3)F, the Π field which can be
identified with the SU(3)F octet of pseudoscalar mesons (by suppo-
sition) as

Π =


π0√

2
+ η√

6
π+ K+

π− − π0√
2
+ η√

6
K0

K− K̄0 − 2η√
6

,

 (8.3.14)

where we assumed the Gell-Mann basis for the generators, ta =

Ta = λa/2 (see Note 67). From this, we can determine the coeffi-
cients Πa, for example Π1 = π+ + π− and Π2 = i(π+ − π−).

This Π field satisfies the requirement that it transform linearly
under SU(3)F. Setting α = 0 in (8.3.12)

eiβ·Ve2iΠ/Fe−iβ·V =
∞

∑
n=0

1
n!

eiβ·V
(

2iΠ
F

)n
e−iβ·V

=
∞

∑
n=0

1
n!

(
eiβ·V 2iΠ

F
e−iβ·V

)n

= e2iΠ′/F (8.3.15)

where Π′ = eiβ·VΠe−iβ·V as required.
Let us write Σ = e2iΠ/F, as well as UL = eiα·Aeiβ·V and UR =

eiα·Aeiβ·V , then (8.3.12) becomes

Σ′ = ULΣU†
R . (8.3.16)

In the case that α = 0, UL = UR = UV , and (8.3.16) is just a
similarity transformation leaving the vacuum invariant, reflecting
the unbroken symmetry of H, in this case SU(3)F. For α 6= 0, the
transformation takes us from one vacuum to another.

The effective Lagrangian still must be invariant under the full
symmetry group of the full Lagrangian, SU(3)L × SU(3)R in QCD.
Given (8.3.16), we can infer operators in the effective Lagrangian Lχ

must have Σ and Σ† appearing in pairs. Since the operators should
be scalars, terms should be traced over SU(3) indices.

The final observation we should make before writing down the
Lagrangian is that the scale at which chiral perturbation theory
breaks down, generically labelled Λχ is not known a priori. One
might use the experimental observation that the vector mesons,
e.g. the ρ meson, cannot be Goldstone bosons,92 to suggest Λχ ≈ 92 Recall Goldstone bosons must have

spin 0.mρ = 770 MeV. Another argument might be that Λχ ≈ 4πF. In fact
this is up for debate. One must examine the convergence of chiral
perturbation theory empirically.
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Now we write down the leading order chiral Lagrangian. The
lowest dimension term we can consider is dimension 0, but it is too
trivial: TrΣ†Σ = 3. The next highest is dimension 2

LLO
χ =

F2

4
Tr ∂µΣ ∂µΣ† . (8.3.17)

The normalization here yields the canonical normalization for the
Πa kinetic energy term, i.e. 1

2 ∂µΠa∂µΠa, when the Σ(x) field is
expanded about small Πa(x)/F. One can also examine the leading-
order strong interactions between Goldstone bosons after expand-
ing out Σ(x).

The whole point of using the chiral Lagrangian, indeed of using
any effective Lagrangian, is to replace the more complicated full
Lagrangian with a tower of simpler operators. As long as we look
at low energy processes, the results of calculating Greens functions
should be nearly equal. A convenient method for carrying out this
matching between full and effective theories makes use of external
sources. Therefore, let us introduce the following external sources

`µ(x) = `0
µ(x) + `a

µ(x)Ta , rµ(x) = r0
µ(x) + ra

µ(x)Ta ,

s(x) = s0(x) + sa(x)Ta , p(x) = p0(x) + pa(x)Ta , (8.3.18)

corresponding to left-handed, right-handed, scalar, and pseu-
doscalar sources, with Ta being generators of SU(3)F in the fun-
damental representation 93. These enter the QCD Lagrangian as

93 E.g. the Gell-Mann matrices λa

(Note 67).

Lsrc
QCD = − 1

4
Fa

µνFa,µν + q̄Lγµ(iDµ − `µ)qL + q̄Rγµ(iDµ − rµ)qR

− q̄L(s + ip)qR − q̄R(s− ip)qL . (8.3.19)

Take care to note the different spaces in which terms operate: e.g. in
the second term iDµ has SU(3)c indices but is diagonal in flavour
while `µ is diagonal in colour but is generally nondiagonal in
flavour. These sources represent probes external to the QCD sec-
tor of the standard model. We will see shortly that the insertion of
a weak current or an electromagnetic current can be represented by
using `µ or vµ = `µ + rµ, respectively.

When we say we match the effective theory to the full theory, we
mean that we require the generating functionals of the two theories
to be equal (in the low energy limit, up to some finite precision).
Usually we work with the generating functional W(`µ, rµ, p, s)
which gives the connected Green’s functions, and is related to the
generating functional for all Green’s functions via iW(`µ, rµ, p, s) =
log Z(`µ, rµ, p, s). In the full theory,

e iW(`µ ,rµ ,p,s) =
∫
DqDq̄DAa

µ e i
∫

d4xLsrc
QCD(q,q̄,Aµ ,`µ ,rµ ,p,s) , (8.3.20)

while in the effective theory

e iW(`µ ,rµ ,p,s) =
∫
DΣ e i

∫
d4xLsrc

χ (Σ,`µ ,rµ ,p,s) . (8.3.21)



89

The next step is to determine how to introduce the external
sources into the effective Lagrangian. We do this by observing that
the QCD Lagrangian with external sources (8.3.19) can be invariant
under local SU(3)L × SU(3)R transformations

qL(x) 7→ UL(x)qL(x) , q̄L(x) 7→ q̄L(x)U†
L(x)

qR(x) 7→ UR(x)qR(x) , q̄R(x) 7→ q̄R(x)U†
R(x) (8.3.22)

provided that the external fields transform according to

`µ(x) 7→ UL(x)`µ(x)U†
L(x) + i(∂µUL(x))U†

L(x)

rµ(x) 7→ UR(x)rµ(x)U†
R(x) + i(∂µUR(x))U†

R(x)

(s + ip)(x) 7→ UL(x)(s + ip)(x)U†
R(x) . (8.3.23)

In particular, note that `µ(x) and rµ(x) transform just as SU(3)L,R

gauge fields and enter the covariant derivative accordingly.
The chiral Lagrangian can be expanded to include the external

sources, where under SU(3)L × SU(3)R gauge transformations
(8.3.16) becomes

Σ(x) 7→ UL(x)Σ(x)U†
R(x) .

The external field transformations (8.3.23) restrict the terms which
can appear in the gauge invariant chiral Lagrangian to be

Lsrc
χ =

F2

4
TrDµΣ DµΣ† +

F2

4
Tr(χΣ† + Σχ†) (8.3.24)

where
χ = 2B0(s + ip)

for some constant B0 which has mass dimension 1, and

DµΣ = ∂µΣ + i`µΣ − iΣrµ

DµΣ† = ∂µΣ† + irµΣ† − iΣ†`µ . (8.3.25)

This procedure of enforcing SU(3)L × SU(3)R gauge invari-
ance is equivalent (in the absence of anomalies) to satisfying Ward
identities and can also be modified to deal with anomalous Ward
identities.94

94 H Leutwyler. On the foundations
of chiral perturbation theory. Annals
Phys., 235:165–203, 1994

Just to give an idea of what lies beyond leading order, here is the next-to-leading-order (NLO) term in
the chiral Lagrangian:

LNLO
χ = α1Tr(DµΣ DµΣ†)2 + α2Tr(DµΣ DνΣ†)Tr(DµΣ DνΣ†) + α3Tr(DµΣ DµΣ†DνΣ DνΣ†)

+ α4Tr(DµΣ DµΣ†)Tr(χΣ† + Σχ†) + α5Tr[DµΣ DµΣ†(χΣ† + Σχ†)]

+ α6

[
Tr(χ†Σ + Σχ†)

]2
+ α7

[
Tr(χ†Σ− Σχ†)

]2
+ α8Tr

[
(χ†Σ)2 + (Σ†χ)2

]
+ iα9Tr(LµνDµΣ DνΣ† + RµνDµΣ DνΣ†) + α10Tr(LµνΣ RµνΣ†) (8.3.26)

where Lµν and Rµν are the field strength tensors for the external left- and right-handed sources

Lµν = ∂µ`ν − ∂ν`µ + i[`µ, `ν]

Rµν = ∂µrν − ∂νrµ + i[rµ, rν] . (8.3.27)

Determining these coefficients αj (traditionally denoted with `j or Lj) is an area of active research, both
experimentally and using lattice QCD.
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8.4 A few uses of χPT

If we set `µ = rµ = p = 0 in (8.3.19), then we have

Lsrc
QCD = −1

4
Fa

µνFa,µν + q̄i/Dq − q̄sq . (8.4.1)

This is equivalent to the Lagrangian for massive QCD (7.1.1) when
the scalar source s(x) is set equal to the mass matrix

M =

mu 0 0
0 md 0
0 0 ms

 .

Fixing s(x) in this way explicitly breaks SU(3)L × SU(3)R down
to SU(3)F. We say this is a “soft” symmetry breaking, because
the quark masses are small compared to Λχ. The effect of this is
to make the Nambu-Goldstone bosons become pseudo-Nambu-
Goldstone bosons with finite mass. The story of light mesons re-
mains approximately true, with small corrections due to the small
quark masses.

The masses for the pseudo-Nambu-Goldstone bosons can be
read off from the s(x) = M term in (8.3.24):

F2

4
Tr(χΣ† + Σχ†) =

B0F2

2
Tr[M(Σ + Σ†)] .

Expanding out Σ = exp(2iΠ/F) and focusing on the quadratic
terms yields

1
2
(mu +md)B0(|π+|2 + |π−|2) + 1

2
(mu +ms)B0(|K+|2 + |K−|2) + . . . .

Thus, leading order chiral perturbation theory predicts the Nambu-
Goldstone boson masses depend on the quark masses as

m2
π± = B0(mu + md) , m2

η =
B0

3
(mu + md + 4ms)

m2
K± = B0(mu + ms) , m2

K0 = B0(md + ms) . (8.4.2)

Using experimental data for the meson masses, then gives a leading
order prediction for the ratios of quark masses. Since the “isospin”
splittings, i.e. those due to swapping up and down quarks, are
small compared to splittings due to swapping either up or down
with strange, we can make a decent approximation by assuming
mu ≈ md. Writing the average up/down quark mass as m̂, we
obtain

m̂
ms

=
m2

π

2m2
K −m2

π
≈ 1

26
.

Also in this approximation we can obtain the Gell-Mann–Okubo
relation

m2
η =

1
3
(4m2

K −m2
π) .

In QCD, the scalar quantity which gets a nonzero vacuum ex-
pectation value due to spontaneous symmetry breaking is the chiral
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condensate, 〈0|q̄q|0〉. Substituting u, d, or s, may lead to different
values for the corresponding condensates. Looking at (8.3.20) and
(8.4.1), we see that we can obtain the chiral condensates from differ-
entiating the generating functional

δW
δsij(x)

∣∣∣∣∣
s=0

= −〈0|q̄i(x)qj(x)|0〉

where i, j = 1, 2, 3 are flavour indices.95 If we are interested in 95 Instead of differentiating with
respect to the matrix elements of
s = s0 + saTa, one could differentiate
with respect to the coefficients of each
term as appropriate. For example,
noting that we can use the Gell-Mann
matrices Ta = λa/2 (Note 67) to write1 0 0

0 0 0
0 0 0

 =
1
2

(
2
3

1 + λ3 +
1√
3

λ8
)

we find

〈0|ū(x)u(x)|0〉 = −
[

1
3

δW
δs0(x)

+
δW

δs3(x)
+

1√
3

δW
δs8(x)

]
.

studying the spontaneous symmetry breaking itself, we wish to
find the chiral condensate for s → 0. We may also be interested in
the physical case where we instead set s = M. Since we are able
to approximate (8.3.20) by (8.3.21), we find that at leading order,
expanding Σ(x) ≈ 1 + . . .,

〈0|q̄i(x)qj(x)|0〉 = −F2B0 δij . (8.4.3)

We can use the chiral Lagrangian (8.4.1) to determine the leading
order hadronic matrix element governing weak decays, e.g. π → eν̄e

as in § 6.4. Notice that we can obtain left-handed currents with any
flavour structure using

ja
µ(x) = −

∂Lsrc
QCD

∂`aµ(x)
= q̄LγµTaqL = q̄γµ

1
2 (1− γ5)Ta q . (8.4.4)

For example the Standard Model weak current (6.4.1) 96 which is 96 Here we consider only the 3 quark
flavours relevant for chiral perturba-
tion theory.

indeed external to QCD,

Jµ = ūγµ(Vudd + Vuss)

can be written

Jµ = Vud(j1µ + i j2µ) + Vus(j4µ + i j5µ) .

Now to derive the weak current within chiral perturbation the-
ory, we differentiate (8.3.24) with respect to the left-handed sources

jeff,a
µ = −

∂Lsrc
χ

∂`aµ(x)

= − iF2

2
Tr(TaΣ ∂µΣ†)

= − F
2

∂µΠa + . . . (8.4.5)

having used ∂µ(ΣΣ†) = 0 to rearrange and combine terms, and
then, after expanding Σ and keeping only the leading nontrivial
term, Tr(TaTb) = 1

2 δab. Finally we conclude the leading order
current governing π− leptonic decay is

Jµ = −Vud
F
2

∂µ(Π1 + iΠ2) = −Vud F ∂µπ− , (8.4.6)

using (8.3.14). Acting with Jµ on a π− state with definite momen-
tum p yields the matrix element

〈0|Jµ|π−(p)〉 = −Vud F pµ . (8.4.7)

Thus we can identify, at leading order in the chiral expansion, the
F appearing in the chiral Lagrangian with the pion decay constant
introduced in (6.4.3).97 97 I am still checking factors of

√
2

and i to be sure they are consistent
throughout the notes.
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