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Numerical Analysis – Lecture 11

3 Spectral Methods

Discussion 3.1 (Large matrices versus small matrices) Finite difference schemes rest upon the
replacement of derivatives by a linear combination of function values. This leads to the solu-
tion of a system of algebraic equations, which on the one hand tends to be large (due to the slow
convergence properties of the approximation) but on the other hand is highly structured and
sparse, leading itself to effective algorithms for its solution. We will get to know some of these
algorithms in Section 4.

However, an enticing alternative to this strategy are methods that produce small matrices in
the first place. Although, these matrices will usually not be sparse anymore, the much smaller
the size of the matrices renders its solution affordable. The key point for such approximations are
better convergence properties requiring much smaller number of parameters.

Problem 3.2 (Fourier approximation of functions) We consider the truncated Fourier approxima-
tion of a function f on the interval [−1, 1]:

f(x) ≈ φN (x) =

N/2∑
n=−N/2

f̂ne
iπnx, x ∈ [−1, 1], (3.1)

where here and elsewhere in this section N ≥ 2 is an even integer and

f̂n =
1

2

∫ 1

−1
f(t)e−iπnt dt, n ∈ Z

are the (Fourier) coefficients of this approximation. We want to analyse the approximation prop-
erties of (3.1).

Theorem 3.3 (The de la Valleé Poussin theorem) If the function f is Riemann integrable and f̂n =
O(n−1) for |n| � 1, then φN (x) = f(x) + O(N−1) as N → ∞ for every point x ∈ (−1, 1) where f is
Lipschitz.

Remark 3.4 (The Gibbs effect at the end points) Note that if f is smoothly differentiable then,
integrating by parts,

f̂n =
(−1)n+1

2πin
[f(1)− f(−1)] + 1

πin
f̂ ′n = O(n−1) for |n| � 1.

Since such an f is Lipschitz on (−1, 1), we deduce from Theorem 3.3 that φN converges to f there
with speed O(N−1). However, convergence with speed O(N−1) is very slow and moreover, we
cannot guarantee convergence at the endpoints −1 and 1. In fact, it is possible to show that

φN (±1)→ 1

2
[f(−1) + f(1)] as n→∞

and hence, unless f is periodic we fail to converge.

If f is periodic and analytic, then one can show that the Fourier series converges exponentially
fast.

Theorem 3.5 Assume f : R → R is 2-periodic, and has an analytic continuation into the complex strip
{z ∈ C : −a ≤ |Im z| ≤ a}. Then |f̂n| ≤Me−πa|n| for all n ∈ Z, where M = maxx∈[−1,1] |f(x± ia)|.
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Proof. We know that f̂n = 1
2

∫ 1

−1 f(x)e
−iπnxdx. We claim that

f̂n = 1
2

∫ 1

−1
f(x+ ia)e−iπn(x+ia)dx. (3.2)

Since F (z) = f(z)e−iπnz is analytic on the rectangle [−1, 1] × [−a, a] ⊂ C we know that
∫
γ
F =

0 where γ is the contour around this rectangle. Furthermore, since F is 2-periodic, we have∫
[1,1+ia]

F = −
∫
[−1+ia,−1] F . It thus follows that

∫
[−1,1] F =

∫
[−1+ia,1+ia]

F , which proves (3.2).

This immediately gives |f̂n| ≤ Meπna, which proves the desired inequality for n ≤ 0. To prove
the inequality for n ≥ 0 we use x− ia instead of x+ ia in (3.2).

Corollary 3.6 Under the same conditions as the theorem above, we have ‖f − φN‖∞ ≤ 2Mc
1−c c

N/2 where
c = e−aπ ∈ (0, 1).

Proof. For any x ∈ [−1, 1] we have

|f(x)− φN (x)| = |
∑

|n|>N/2

f̂ne
iπnx| ≤

∑
|n|>N/2

|f̂n| ≤M
∑

|n|>N/2

c−|n| =
2Mc

1− c
c−N/2.
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