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The emphasis in this short introductory chapter is on those fluid dynam-
ical phenomena that are best understood in terms of convection and dif-
fusion of vorticity, the curl of the velocity field. Vorticity is generated at
fluid boundaries, and diffuses into the fluid where it is subject to convec-
tion, stretching and associated intensification. Far from boundaries, vis-
cous effects may be negligible, and then vortex lines are transported with
the fluid. Vortex rings, which propagate under their own self-induced
velocity, are a widely observed phenomenon, and a fundamental ingre-
dient of fluid flow. Stretching and intensification is best illustrated by
the ‘Burgers vortex’ (the simplest model for a hurricane) in which these
process are in equilibrium with viscous diffusion. Instabilities of Kelvin-
Helmholtz type are all-pervasive in highly sheared flow, and inexorably
lead to transition to turbulence. In turbulent flow, the vorticity is ran-
dom, but these fundamental processes still dictate many features of the
flow. Fully three-dimensional turbulence is characterised by a cascade of
energy through a broad spectrum from large scales to very small scales
at which kinetic energy is dissipated by viscosity, a scenario that leads to
the famous (-5/3) Kolmogorov spectrum. These topics are reviewed and
discussed with a view to geophysical applications. The phenomena of
intermittency and concentrated vortices as revealed by direct numerical
simulation are also briefly discussed.

1. Introduction

Vortex (or vorticity) dynamics is concerned with the manner in which
swirling flows evolve in fluids when viscous (i.e. internal friction) effects
are relatively weak, and can be neglected in a first approximation. Such
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flows are controlled largely by inertial effects. An understanding of vortex
dynamics is an essential preliminary to a consideration of turbulent flows
in which the vorticity distribution is a highly complex function of position.
Its time evolution is most easily understood through the statement that
“vortex lines are frozen in the fluid”, i.e. they are transported with the
flow like material curves of fluid particles. This is not quite the whole story
however, because, insofar as the flow may be treated as incompressible, the
vorticity is intensified as the vortex lines are transported, in proportion to
the stretching of vortex line elements. This stretching is very persistent in
a turbulent flow, leading to very strong intensification of vorticity coupled
with progressive decrease of the scale of variation of the flow, an effect
usually described in terms of an ‘energy cascade’. This cascade to small
scales is ultimately controlled by viscosity, no matter how weak this phys-
ical property of the fluid may be; and one of the remarkable properties of
turbulent flow is that the rate of dissipation of energy by viscosity is in-
dependent of the value of viscosity even in the limit as this tends to zero,
and this because the smallest scales of the flow adjust in just such a way as
to dissipate the kinetic energy at the very rate at which it cascades down
from larger scales.

The central role of vorticity in describing fluid motion was recognised
by Hermann von Helmholtz (1858), who first recognised the above cru-
cial ‘frozen-in’ property. The 150th anniversary of the publication of this
seminal paper was marked by the IUTAM Symposium 150 years of Vor-
tex Dynamics, recently held at the Technical University of Denmark (Aref
2010; the 50 papers contained in this volume provide an indication of the
huge current scope and applications of the subject). The theory of vortic-
ity was taken up and enthusiastically developed by William Thomson (later
Lord Kelvin) (1867; 1869 and many subsequent papers), who proposed that
the atomic structure of the various elements might be explained in terms
of knotted vortex tubes, whose ‘knottedness’ would be conserved under
frozen field evolution. Such structures turn out to be dynamically unstable,
and Kelvin was ultimately obliged to abandon his theory of ‘vortex-atoms’;
nevertheless, his pioneering investigations opened up the new field of hy-
drodynamic instability, providing important clues concerning the ubiquity
of turbulent, as opposed to laminar, flows in all large-scale natural systems.
Figure 1 shows Helmholtz and Kelvin around 1870, when both were at the
height of their powers and creativity.
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Fig. 1. Hermann von Helmholtz (left) and William Thomson (Lord Kelvin): the early
pioneers of vortex dynamics.

2. Vorticity and the Biot-Savart law

Let u(x,t) be the velocity field in a fluid which fills all space. This is of
course an idealisation, relevant when we consider fluid behaviour that is
uninfluenced by remote fluid boundaries. We shall suppose further, for sim-
plicity, that the fluid has uniform density p, and that it (or rather the flow)
is incompressible, i.e. V - u = 0. Under this approximation, sound waves
are filtered out of the governing Navier-Stokes equations. The vorticity field
w(x,t) is defined by

w=V xu(x,t), (2.1)

so that immediately V -w = 0. We can conveniently think of ‘vortex tubes’
in the flow, i.e. the set of vortex lines passing through any small material
surface element d A. The ‘circulation’ round such a tube is

F:y{Cu-dX://aAw-ndA, (2.2)

where C' is a closed curve circling the tube once, and this is evidently
constant, independent of the particular cross-section of the tube that is
chosen (figure 2a). It is frequently stated that vortex lines must either be
closed curves or end on a fluid boundary, but this is incorrect: it is now
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known that in a general three-dimensional flow, the vortex lines are chaotic,
and any two neighbouring vortex lines will in general diverge exponentially
(a good example may be found in the ‘ABC’-flow studied by Dombre et al.
(1986)). For this reason, the concept of a vortex tube must be treated with
caution, particularly in a turbulent flow in which the cross-section of any
instantaneous vortex tube will become seriously deformed if followed far
enough along its length.

%

Fig. 2. Vorticity configurations and induced velocity fields. (a) Vortex tube with circu-
lation T'. (b) Localised vorticity field, and induced velocity, dipolar at a large distance.
(c) Vortex ring and its induced velocity.

By virtue of the incompressibility condition V-u = 0, we may introduce

a vector potential A(x,t) for u, such that u =V x A, V-A =0. Then we

have immediately w = V x (V x A) = —V2A. If the vorticity distribution

is localised (and by this, we usually mean that |w| decreases exponentially

rapidly outside some bounded region), then the appropriate solution of this
Poisson equation is

/
Al t) = 1 [0 gy (2.3)

T 4n ) [x— x|

The corresponding velocity field is then

umwzvXA:ml/@—f“w@”Mw. (2.4)

47 |x —x/|3

This is the ‘Biot-Savart law’, giving the velocity field u(x, t) ‘induced’ by the
vorticity field w(x,t). It is this velocity field that transports the vorticity
field, a nonlinear feedback that encapsulates the central difficulty of the
dynamics of fluids.

If, as supposed, the vorticity field is localised, then for |x| >> |x/|,
(where x’ is any point within the vortical region), equation (2.3) may be
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manipulated to give

1
A) ~ (X V) (2.5)
where
1
p=— [ xxwdV, (2.6)
8

and r = |x|. The corresponding asymptotic behaviour of u is
1
u~Vip-V)-, (2.7)

an irrotational velocity field associated with an (apparent) dipole p located
at r = 0. (The result is independent of the origin chosen for x; proof: an
exercise for the reader!) The situation is as sketched in figure 2b. Equation
(2.7) shows that the velocity field associated with an arbitrary localised
vorticity distribution is dipolar at a large distance, of order r—2 as r — oo.

The most familiar example of a localised vorticity distribution is pro-
vided by the ‘vortex ring’ for which the vorticity field is axisymmetric and
confined to a torus, the vortex lines being circles around the axis of the torus
(figure 2¢). Such vortex rings may be produced and visualised by tapping a
smoke-filled box so that air is ejected impulsively through a suitably shaped
orifice; both the vortex ring and the smoke are then transported together
by the self-induced velocity field. This was the basis of Tait’s (1867) demon-
stration which so impressed Kelvin, who proceeded to calculate the speed
of propagation V' of a vortex ring of radius R, starting from the Biot-Savart
law (2.4), and on the assumption that the vorticity is uniformly distributed
across the ‘core’ of the vortex of small core radius a; his result, recorded in
an appendix to Tait (1867), was

wa? S8R 1

Vortex rings generated by the method of Tait (exploiting the re-
tarding effect of viscosity in the boundary layer inside the orifice)
can travel a considerable distance before being dispersed as a result
of instability or through the direct action of viscosity. Vortex rings
appear to be ubiquitous in nature, the most striking example being
the vortex/steam rings emitted in volcanic eruptions (see, for exam-
ple, the beautiful photographs by Marco Fulle of this phenomenon at
http://www.swisseduc.ch/stromboli/etna/etna00. A fine example of
the persistence of vortex rings (visualised with bubbles at their core), and
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the playful manner in which dolphins can interact with them can be found at
http://www.metacafe.com/watch/1041454/dolphinplaybubblerings.

3. The Euler equation and its invariants

We take as a starting point the Navier-Stokes equations for a viscous in-
compressible fluid in their familiar form
0 1

a—?-l—u-Vu: —;Vp-l—uvzu, (3.1)

V-u=0, (3.2)

where p is the fluid density (here assumed constant), and v is the kinematic
viscosity of the fluid. If, for the moment, we neglect viscous effects entirely,
we simply set v = 0, giving the equations obtained by Euler (1755).
ou 1
— -Vu=—--Vp, 3.3
gy T Vu=—Vp (3.3)
V-u=0. (3.4)

It is remarkable that, despite the fact that these Euler equations were dis-
covered more that 250 years ago (Eyink et al., 2008), we still do not know
whether the solutions that evolve from smooth initial conditions of finite
energy remain smooth for all time; or conversely, whether there exist any
smooth finite-energy initial conditions for which the solution of the Eu-
ler equations becomes singular at finite time. This ‘finite-time singularity
problem’ may seem a rather esoteric issue, of more interest to mathemati-
cians than to geophysicists or engineers; but in fact it lies at the heart of
the problem of turbulence, having an obvious bearing on the mechanism of
dissipation of energy at the smallest scales of motion, and it is therefore a
problem that merits serious study. It is known that, if a singularity occurs
at some finite time t., say, then the time-integral of the maximum value of
the vorticity must diverge as t — t. (Beale et al., 1984). This result places
the focus of investigation firmly on the behaviour of the vorticity field in
general three-dimensional situations. We shall suppose in what follows, that
the velocity and vorticity fields do in fact remain smooth for all time, unless
otherwise stated.
The Euler equation (3.3) may be written in the equivalent form

ou

ou _ v (Pl
5 — UXw V( + u), (3.5)

p 2
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from which, taking the curl, we immediately obtain the ‘vorticity equation’

ow
E:VX(uxw). (3.6)

This is the equation that implies that the vortex lines behave like material
lines, and are therefore transported with the fluid. Kelvin proved, on the
basis of this equation, that the circulation, defined as in (2.2),

K:jfcu-dx, (3.7)

but now for any material (i.e. ‘Lagrangian’) circuit C' that moves with the
fluid, is constant. By virtue of (2.2), K is also the flux of vorticity through
C'; hence any flow that stretches a vortex tube and (by incompressibility)
decreases its cross-section must proportionately intensify the vorticity in
the tube. In fact, if dx is an element of a vortex line which moves with the
fluid, then |w| o |6x]|. [The corresponding result for compressible flow is
that |w| o p|dx]|.]

There are four known invariants of the Euler equations, namely mo-
mentum P, angular momentum M, (kinetic) energy F, and helicity H. One
might naively suppose that the momentum should be given by P = f pudV,
the integral being over the whole fluid domain. This integral is however, at
best only conditionally convergent, due to the slow O(r~2) decrease of u at
infinity. One may calculate the momentum of any given flow by supposing
that the corresponding vorticity distribution is established from a state of
rest by an impulsive force distribution at the moment under consideration
(Saffman, 1995); the result is that

1
P:§/pxxde, (3.8)

an integral that is certainly convergent for any localised vorticity distribu-
tion. It may also be verified directly from (3.6) that P is indeed constant.
Note that P = 47w u, so that the dipole moment of a localised vorticity dis-
tribution is constant in time. This result is true also for viscous evolution
under the Navier-Stokes equations, the reason being that under the influ-
ence of viscosity, momentum is neither created nor destroyed, but merely
redistributed by the process of diffusion.

Similarly, the correct expression for angular momentum may be ob-
tained in the form

1

M:§/px><(x><w)dv, (3.9)
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and this integral is also constant under either Euler or Navier-Stokes evo-
lution.

The kinetic energy (divided by density p) is given by the convergent
integral

2

and this is constant under Euler evolution. However, under Navier-Stokes

E
‘il—t = —V/w2 dv, (3.11)

the right-hand side representing the rate of dissipation of energy by viscos-

E = 1/112 dv, (3.10)

evolution, we have

ity. The integral on the right is called the ‘enstrophy’ of the flow, and is
usually denoted by the symbol €2:

Q:/w2 dv, %:_”Q‘ (3.12)

Like vorticity itself, the enstrophy has a persistent tendency to increase in
turbulent flow, a process ultimately controlled by viscosity.
Finally, the helicity ‘H is given by

Hz/u-de, (3.13)

and this also is an invariant of the Euler equations (Moreau, 1961; Moffatt,
1969). Like energy, it is a quadratic functional of the velocity field, but,
unlike energy, it is not sign-definite; actually it is a ‘pseudo -scalar’, changing
sign under change from a right - to left-handed frame of reference; this is why
we use the non-mirror-symmetric symbol H to denote it. By the Schwartz
inequality, it is bounded in magnitude:

H| < EQ, (3.14)

with equality only if w is everywhere parallel to u. Such ‘Beltrami’ flows
are evidently flows of maximal helicity. The helicity is conserved even in
compressible flows provided these satisfy the barotropic condition that pres-
sure is a function only of density (and not for example of temperature), i.e.
p = p(p). In fact, helicity is conserved under precisely the same conditions
under which Kelvin’s circulation theorem is satisfied and vortex lines are
frozen in the fluid. The physical interpretation of helicity is topological in
character: this integral represents the ‘degree of linkage’ of the vortex lines
of the flow, a quantity that should certainly be preserved under frozen-field
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evolution . The interpretation is most transparent for the case of two sim-
ply linked vortex tubes of circulations I'y and I's; for this configuration, it
emerges that

H = +2n[4 Ty, (3.15)

where n is the (Gauss) linking number of the two tubes, and the plus
or minus sign is chosen according as the linkage is right- or left-handed
(assuming of course, as is conventional, that we use a right-handed frame
of reference). This topological interpretation has been extended to flows for
which the vortex lines are chaotic (the generic situation) by Arnol’d (1974).

4. The stretched vortex of Burgers (1948)

In a turbulent flow, each constituent vortex tube (or portion of a vortex
tube) is subject to the stretching associated with all other vortices in the
flow. It is natural therefore to consider an idealised situation in which this
stretching is as simple as possible, i.e. axisymmetric, uniform and steady.
We consider a vorticity distribution with just one component

w = (0,0,w(r)), (4.1)

where we use cylindrical polar coordinates (7, ¢, z) with 72 = 22 + 2, and
we suppose this subjected to the action of ‘uniform axisymmetric straining
flow’ with constant rate of strain (> 0):

U = (—27r,0,vz). (4.2)

In the absence of this strain, the vortex would diffuse under the action of
viscosity; the strain and associated vortex stretching counteracts this effect
and a steady state is possible. Note that the additional velocity induced by
the vortex is given, from (2.1), by

u = (0,v(r),0), (4.3)

where

v(r) = 1/Orw(r')?“’ dr’, (4.4)

r

and that this additional velocity has no effect on the vorticity distribution
(because V X (u X w) = 0).
The vortex therefore evolves according to the equation

%—L::VX(UXW)—FVVQQJ; (4.5)
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this equation has only a ¢-component, which reduces to

ow v 0(r*w) v 0 Ow
o "2 o o or 0

The steady solution, with boundary conditions w(0) = wp, w — 0asr — oo,
is

w(r) = woexp —(yr?/4v), (4.7)
a gaussian vorticity distribution, with total flux of vorticity

= 27r/ w(r)rdr = 4rwov /7. (4.8)
0

The associated velocity component v(r) is given, from (4.4), by

o(r) = % (1 ~exp (_1_7;2» | (4.9)

The circulation round a circle of radius r is 27rv(r), and this tends to the
constant I" for r > & where § = v/~ is a measure of the radius of the tube.
The structure of this vortex is sketched in figure 3.
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Fig. 3. The stretched Burgers vortex with circulation I' and gaussian vorticity profile.

A remarkable feature of this vortex, as noted by Burgers (1948), is that
the corresponding rate of dissipation of energy per unit length of vortex,
namely

d = 27w / wrdr =T%y/87, (4.10)
0
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is independent of v (for fixed circulation I') even in the limit as v — 0. In

this limit, § — 0, wy = O(6~2) , and the gaussian distribution of vorticity

tends to a delta-function. Thus, the vorticity is indeed singular in the limit,

yet the rate of dissipation of energy per unit length of vortex remains finite.
If the strain field is non-axisymmetric, of the form

U(z,y,z) = (az, fy,vz), with a < <0<y, a+8+7=0, (4.11)

the problem becomes much more complicated, and the behaviour is strongly
influenced by the value of the appropriate Reynolds number, here Repr =
I'/v. When Rer > 1, as relevant in the context of turbulence, and when
B < 0, the rapid spin within the vortex is sufficient to minimise departures
from axisymmetry, and the solution (4.7) is still valid at leading order, the
small departures from axisymmetry in the contours of constant w having
an interesting topological structure (Moffatt et al., 1994).

The particular situation when 8 = 0 provides a stretched vortex sheet
localised near the plane z = 0, also with gaussian structure. This two-
dimensional solution has been generalised by conformal mapping techniques
to provide a wide class of exact solutions of the Navier-Stokes equations ex-
hibiting a fascinating range of ‘floral’ vortical patterns (Bazant and Moffatt,
2005). For such two-dimensional solutions however, the maximum vorticity

1/2 as v — 0, and the rate of

in each sheet increases in proportion to v~
dissipation of energy per unit area of the vortex sheets is O(v'/?), thus
vanishing in the limit ¥ = 0, in striking contrast to the axisymmetric case.
This is one reason why vortex tubes, rather than vortex sheets, are the more
promising candidates for the role of typical structures within a turbulent

flow.

5. Kelvin-Helmholtz instability

In consideration of the instabilities to which fluid flows are subject, we
should distinguish between ‘fast’ instabilities, i.e. those that are of purely
inertial origin and have growth rates that do not depend on viscosity, and
‘slow instabilities’, which are essentially of viscous origin, and whose growth
rates therefore tend to zero as the viscosity v tends to zero, or equivalently
as the Reynolds number Re = UL/v tends to infinity. Examples of fast
instabilities are the ‘Rayleigh-Taylor instability’ that occurs when a heavy
layer of fluid lies over a lighter layer, the ‘centrifugal instability’ (leading to
‘Taylor vortices’) that occurs in a fluid undergoing differential rotation when
the circulation about the axis of rotation decreases with radius, and the
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‘Kelvin-Helmholtz instability’ that occurs in any region of rapid shearing
of the fluid. The best known example of a slow instability is the instability of
pressure-driven ‘Poiseuille flow’ between parallel planes, which is associated
with subtle effects of viscosity in ‘critical layers’ near the boundaries; the
‘dynamo instability’ of magnetic fields in electrically conducting fluids is
also diffusive in origin (through magnetic diffusivity rather than viscosity),
and may therefore also be classed as a slow instability.

Here, we shall focus on the Kelvin-Helmholtz instability, idealised as the
instability of a tangential discontinuity of velocity, which we may take to
be

U= (FU/2,0,0) for y>or<0. (5.1)

The vorticity is then concentrated on the sheet y = 0, and given by the
delta-function

w = (0,0,U6(y)). (5.2)
We suppose that this sheet is subjected to the sinusoidal perturbation
y =n(z,t) =n(t)expikz, (5.3)

with & > 0, the real part of (5.3) being understood. All perturbations may
similarly be supposed proportional to expikx. The flow is assumed to be
irrotational everywhere except on this disturbed sheet; the perturbation is
thus ‘isovortical” in the sense that the disturbed vorticity is obtained by a
virtual flux-conserving displacement of the undisturbed vorticity field. The
velocity above and below the interface then takes the form

u=(-U/2,0,0)+Ve¢; fory>n, (5.4)
u=(+U/2,0,0) +V¢o fory<n, (5.5)

where, by virtue of incompressibility,
V3¢ =0 and V3¢, = 0. (5.6)

Since moreover the perturbation velocity must vanish as y — +o0, it follows
that

¢1 = Py(t)e VTR gy = Dy(t)e VTR (5.7)
where ®1(t) and ®5(t) are to be found.
There are now two important conditions that must be satisfied on the
vortex sheet y = n(x,t). First, since this sheet moves with the fluid, its
Lagrangian derivative must vanish, i.e.

Dy t) = (0w V) - () =0 ony=n. (5
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Now Dy/Dt = u-Vy = 0¢1 2/0y according as we approach the sheet from
above or below. Also, for so long as the disturbance remains small, the
problem may be linearised, i.e. squares and products of the small quantities
n, ®; and 5 may be neglected and the jump conditions may be applied on
y = 0 instead of y = 7. It follows that

Opr _On 1 0n O On 1__0n B
oy ~ ot 2Uay g, T Tl onv=0 (B9)

Second, the pressure p = cst — pd¢p/dt + pu?/2 must be continuous across
y =1, so that on linearising,

Opa Oy Opa  Op1\ _
oo T §U(a—x+a—x>—0 ony=0. (510)

Equations (5.9) and (5.10) may now be combined to give, after some
simple algebra, the amplitude equation
%n 1
— = —k*U? 5.11
with exponential solutions 1 o< e”* where o = +kU/2. Thus the mode for
which

o= +kU/2 (5.12)

grows exponentially until the linearised theory ceases to be valid. These
modes (for varying wave-number k) are unstable, and the growth rate is
proportional to k, increasing as the wave-length 27 /k of the disturbance
decreases.

The physical mechanism of this instability is that the local strength of
the perturbed vortex sheet, given for the unstable mode by

F(x,t):U—i—%—%—UnLQgt U+ ikUn, (5.13)

is /2 out of phase with 7; the perturbation vorticity is maximal at the
points of inflexion where the slope of 7 is positive, and the induced velocity
is such as to amplify the perturbation (figure 4).

This interpretation of the instability mechanism actually continues into
the nonlinear regime, investigated by Moore (1979). Moore noted first that,
even on linear theory, some kind of singular behaviour is to be expected after
a finite time. For, by way of example, suppose that the initial disturbance
is periodic in & with period A, with convergent Fourier series of the form

Z A, sin W (5.14)
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Fig. 4. The Kelvin-Helmholtz instability of a vortex sheet. (a) Vorticity accumulates
in the sheet at the upward sloping inflexion points. (b) Spiral wind-up after the Moore
singularity.

where
A, =e"n"P, (5.15)

with p > 0. Thus n(z,t) and all its z-derivatives exist at time ¢ = 0. How-
ever, by virtue of (5.12), selecting only the unstable modes, the disturbance
at time t is given by

mUt nmwE

n(a:,t):ZAnexan)\ sin N (5.16)

n=1
and this series diverges for t > t. = 2\ /7U, because the exponential growth
of the coefficients then defeats the power-law decay for large n.

Now nonlinear effects generate harmonics of the initial disturbance even
when this consists of a single Fourier mode, so that a series of the form (5.14)
is soon established. Moore’s achievement was to show that the exact non-
linear solution for n(z,t) becomes singular at a finite time of order /U at
the upward-sloping inflexion points where, as indicated above, the accumu-
lation of vorticity becomes more and more concentrated. This singularity
appears as a discontinuity of curvature, and the vortex sheet strength is cus-
pidal in form. Beyond the singularity time, observation suggests that the
sheet rolls up in a periodic sequence of spiral vortices (figure 4b), although
no analytical solution is as yet available to describe this behaviour.

What is important here is that any vortex sheet is absolutely unstable,
with a tendency to break up into a series of concentrations of vorticity, more
like vortex tubes than a vortex sheet. The vortex tube appears in general
to be a much more robust structure than the vortex sheet which has at best
a transitory existence, even in turbulent flows.
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The Kelvin-Helmholtz instability, as described above, occurs not only
for vortex sheets, but also for parallel shear flows having an inflexion point
in the velocity profile; the ‘tanh’ profile

U = (~U/2tanhy/6,0,0) (5.17)

for which vorticity is distributed in a layer of thickness O(9), is a useful
prototype. Such a velocity field is unstable to sinusoidal perturbations of
wavelength large compared with §; on such scales, the velocity profile ‘looks
like’ the discontinuous profile (5.1), so it is not surprising that it exhibits
the same type of instability leading to spiral wind-up of the whole vortical
layer.

In fact, the existence of at least one inflexion point in the profile of a
parallel shear flow of an inviscid fluid is known to be a necessary condition
for (linearised) instability of the flow (see, for example, Drazin and Reid
(2005)). Plane Poiseuille flow, with its parabolic profile, is therefore stable
in the limit of infinite Reynolds number (v = 0). The source of the (slow)
instability of this and similar flows must therefore be sought in the dual
role of viscosity, usually thought to be merely stabilising!

6. Transient instability and streamwise vortices

There is however another, potentially more potent, mechanism by which
plane parallel non-inflexional flows may be destabilised; this arises through
consideration of the shearing of disturbances of finite (rather than infinites-
imal) amplitude. Such disturbances, as might be anticipated, can be drawn
out into long structures parallel to the flow (or ‘streamwise vortices’) which,
when superposed on the underlying shear flow, provide locally inflexional
profiles, which are then subject to the Kelvin-Helmholtz instability. We
shall illustrate this behaviour by considering the simplest case of uniform
shear flow

U = (ay,0,0), (6.1)
on which, at time ¢ = 0, we superpose a sinusoidal disturbance of the form
u(x,t) = Agexp (iko - %), (6.2)

with kg - Ag = 0 (by incompressibility). For the moment, we retain the ef-
fects of viscosity. The analysis that follows was presented by Moffatt (1967),
and developed in the context of turbulent shear flow by Townsend (1976).
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We suppose that the perturbation, although finite, is still sufficiently
weak to allow linearisation of the Navier-Stokes equation:

1
g—l:+U-Vu+u~VU:—;Vp+VV211, (6.3)

where p is the perturbation pressure associated with the disturbance. This
equation admits a solution of the form

u=A(t)exp (ik(t) -x), p/p= P(t)exp (ik(t) - x), (6.4)

in which both wave-vector k(¢) and amplitudes A(¢) and P(t) are allowed to
vary with time. Such disturbances, first recognised by Lord Kelvin (1887),
are known as ‘Kelvin modes’. We may note that for a single mode of this
kind, the omitted nonlinear term u - Vu in (6.3) is in fact identically zero,
so that (6.4) can provide an exact solution of the Navier-Stokes equation.
However, a superposition of modes of different wave-vectors do involve sig-
nificant nonlinear interactions, which we do not consider here.
Substituting (6.4) in (6.3) gives

A +i(k-x)A + ads(1,0,0) 4+ iayk A = —ikP — vk? A, (6.5)
and we have also, by incompressibility,
k(t)-A(t) =0. (6.6)

The coefficients of x,y and z in (6.5) must vanish; hence by =0,
kg = —Oékl, k?3 = 0, so that

kl = k()l 5 k’g(t) = kog — Oéklt, kg = k()g . (67)

This simply describes the shearing of the wave fronts, which become more
and more aligned parallel to the plane y = 0. If k; = 0, then the wave
vector (0, k2, k3) remains constant, whereas if k; # 0, then the effect of the
shear is asymptotically to align the wave vector in the (0, 1, 0) direction
and to increase its magnitude linearly with time.

Here we may note immediately that the effect of the viscous term is
simply to introduce a factor

—UV t 2 = ex —V 2y 1 020(2 %Oé23 .
expl /O(k(t)) dt] p [kt — kikopat® + K2a%3/3)],  (6.8)

where ko = |kol|, so that, provided k; # 0, this Kelvin mode experiences
‘accelerated decay’ on a time-scale

at = O(a/vk?)'/? . (6.9)
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Modes for which k;/kg is small survive for a long time (when v is small);
the exceptional modes for which k; = 0 survive for the much longer time-
scale O(1/vk3), unaffected by the shear. It is the decay of all modes as
described by (6.8) that accounts for the stability of the flow U on linearised
analysis. However, before this ultimate decay sets in, the amplitude |A(¢t)]
may increase by an arbitrarily large factor, as we shall now show.

Noting first, from (6.6), that k- A + A - k = 0, we have, from (6.5),

—ik?P = —k - A + adyk; = 20 A5k , (6.10)
and the part of (6.5) not involving z,y and z is then satisfied provided
A + aA5(1,0,0) = —ikP = 20 Ask 1 k/k?. (6.11)

Integration of the second component of this equation, then of the first and
third components, is straightforward; with the notation

P=ki+ks, tanf=1/k(t), []=(t)—1(0), (6.12)
the solution is
k3k3 kik2 [k
A0) = Ao — Ao {2100+ B0 [ 2] 1 (6.13)
Aq(t) = Agakd /K2, (6.14)
ksk? ks
Aalt) = v+ 4258 {101 2]} (6.15)

These three components are plotted in figure 5 for the initial conditions
ko =(0.1,1,1) and Ay = (1,1, —1.1), for which k1 /kg ~ 0.07, small enough
for there to be a relatively long period of approximately linear growth of
|A1(t)|. This period of linear growth increases as k1 /ko decreases. The linear
growth, or ‘transient instability’, results from the (u-V)U = u20U /9y term
in equation 6.3, which corresponds to persistent transport of mean-flow x-
momentum in the y-direction.

If a random superposition of modes with isotropically distributed initial
wave-vectors kg is subjected to the above shearing, then the dominant
contribution to the disturbance energy will ultimately come from modes
with wave-vectors in an increasingly narrow neighbourhood of the plane
(in wave-number space) k3 = 0, i.e. from modes for which kg - U =~ 0.
Physically this corresponds to the emergence of structures having little or
no variation in the streamwise direction. Such structures are known, for
obvious reasons, as ‘streamwise vortices’; they grow in strength, under the
action of the mean shear, until the appearance of inflexion points in the
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Fig. 5. Evolution of A1(t) (solid curve), A2(t) (dashed), and A3(t) (dotted), as given by
(6.13)-(6.15), with initial conditions kg = (0.1,1,1) and Ag = (1,1,—1.1) (so ko - Ag =
0); note the relatively long period of linear growth of Aj(t), a symptom of transient
instability.

profile of the total xz-component of velocity is inevitable. At that stage the
flow is prone to ‘secondary instability’ of Kelvin-Helmholtz (K-H) origin;
the flow becomes fully three-dimensional, and the transition to turbulence
is well underway. All this applies of course only if the viscosity parameter
v is sufficiently weak.

The theory described above is a particular case of what is known as
‘Rapid Distortion Theory’ (RDT), which more generally describes the lin-
earised uniform distortion of a field of turbulence by a mean velocity field
of the form

UZ(X) = Cij.il?j, (616)

of which (6.1) is obviously a special case. Such flows may be either elliptic or
hyperbolic in character. It is possible to incorporate additional effects rele-
vant in geophysical applications, e.g. uniform density stratification and/or
coriolis effects associated with the Earth’s rotation. Such effects have been
explored in detail by Sagaut and Cambon (2008), where extensive references
to previous work on RDT may be found.

It is also worth noting that transient instabilities, as described above,
and as greatly developed by Schmid and Henningson (1994), play an im-
portant part in more recent work in which new steady and travelling-wave
solutions of the classical problems of Couette flow and Poiseuille flow in a
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pipe have been found. The essential idea (see, for example, Waleffe (2003);
Pringle and Kerswell (2007)) is that coherent structures formed by transient
instability are unstable to K-H—type instability, and that these (secondary)
instabilities interact coherently in such a way as to regenerate the original
finite-amplitude perturbations to the flow. The highly original new ideas
and results in this area, which have a bearing on the important problem of
transition to turbulence, are among the most exciting to emerge in recent
years.

7. Turbulence, viewed as a random field of vorticity

Over the last twenty years, turbulence has been increasingly subjected to
Direct Numerical Simulation (DNS), i.e. computational treatment of the
Navier-Stokes equations without approximation, by either finite-difference
or spectral techniques, and ‘post-processing’ of the numerical output. Fig-
ure 6 shows the vorticity distribution in high vorticity regions of a field
of turbulence, from a ‘state-of-the-art’ simulation on the Earth Simulator
(Yokokawa et al., 2002); what is important to note here is the apparent
‘tube-like’ structure of this random field. We referred in the introduction to
the persistent stretching of vortex lines in a turbulent flow. Figure 6 gives
some substance to this description: each vortex tube is subject to stretch-
ing associated with the induced velocity of the whole vorticity distribution
(possibly dominated by that of neighbouring vortices), in a manner remi-
niscent of the Burgers’ vortex model of §4 above.

Of course such a description presupposes that there is indeed a system-
atic stretching effect (rather than the opposite — a systematic contraction).
This stretching arises from a natural tendency for any two fluid particles,
initially close together, to move apart under the action of a random incom-
pressible velocity field. Indeed, if x(t) is the separation of two particles,
with 0x(0) = da assumed infinitesimally small and non-random, then it
can be shown (Orszag, 1977) that in homogeneous, isotropic turbulence
(i.e. turbulence whose statistical properties are invariant under translation
and rotation)

(0x*) > da*. (7.1)

When coupled with an assumption concerning the ‘finite memory’ of tur-
bulence (which amounts to assuming that the turbulence field for times
greater than ¢ + t. is uncorrelated with that at time t), this is sufficient
to establish that (6x?) increases systematically in time (Davidson, 2004)
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Fig. 6. Intense-vorticity iso-surfaces (|w| > <w>-+40, where o is the standard deviation
of |w|), in a direct numerical simulation of homogeneous turbulence [from Yokokawa et al.
(2002), by permission]; this simulation was carried out in a periodic box with 4096° grid
points, and at a Reynolds number Re) = 732; this Reynolds number is O(Rel/Q), where
Re = ugL/v. This figure shows a ‘zoomed-in’ high vorticity region of size (7482 x 1496)l,,
where [, is the ‘inner’ Kolmogorov scale. Vorticity fluctuations down to this scale are
reasonably well resolved.

In particular, if dx is aligned with a vortex line, this element of the vortex
line will be systematically stretched by the flow (and this applies to every
element of every vortex line!).

The essential ingredients of the dynamics of turbulence may thus be
thought of as a combination of three elements: formation of sheet-like
structures by shearing of random vorticity (the transient instability mecha-
nism); all-pervasive Kelvin-Helmholtz instability of such structures leading
to tube-like structures with possibly some remnants of spiral wind-up; and
persistent stretching of such vortices by the strain induced by the surround-
ing vorticity field. Each of these ingredients has a tendency to decrease the
scale of the velocity field, i.e. to contribute to the energy cascade towards
the smallest scales of the turbulence, a fundamental aspect of the problem
to which we now turn.

8. The Kolmogorov-Obukhov energy-cascade theory

The random character of a turbulent velocity field necessitates a statistical
treatment in which an ‘ensemble average’ (...) can be defined. By ‘homo-
geneous’ turbulence, as indicated above, we mean turbulence for which all
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such averages are invariant under translation, i.e. independent of the ori-
gin of the coordinate system adopted. By ‘isotropic’ turbulence, we mean
turbulence that is homogeneous and, in addition, invariant under rotation
of the frame of reference, i.e. statistically ‘the same in every direction’.
We note that, if homogeneous turbulence is subjected to uniform strain of
the form (6.16), then it remains homogeneous, but develops increasingly
marked anisotropy, even if isotropic initially. Homogeneous turbulence has
been intensively studied since the pioneering investigations recorded by
Batchelor (1953). A modern treatment of the subject, with emphasis on
the Kolmogorov (1941) theory and its later modifications, is provided by
Frisch (1995).

We restrict attention here to the situation when the mean velocity van-
ishes: (u) = 0. Then attention must be focussed on correlations such as

Rij(r) = (ui(x)u;(x+r)),  Siji(r) = (wi(x)uj(x)up(x41)), ..., (8.1)

in standard suffix notation. Equations for such correlation tensors can be
obtained from the Navier Stokes equations in a straightforward way; the
trouble is that, due to the nonlinearity of these equations, the equation for
OR;;/0t involves terms like S;;x(r); more generally, the time derivative of
any nth-order correlation inevitably involves the current value of (n+ 1)th
order correlations. This is the famous ‘closure problem’ that bedevils the
subject. No completely satisfactory ‘closure’ hypothesis (providing an in-
stantaneous relationship between nth-order correlations and those of lower
order) has yet been found.

There is however one equation for a second-order quantity that does not
involve higher-order quantities®: this is the energy equation, easily derived
from (3.1):

4
dt

The nonlinear term of (3.1) makes no contribution to this energy equa-

% (u?) = —v (w?) +e. (8.2)

tion, because it simply redistributes energy over an ever-increasing range
of length-scales (as if through the generation of harmonics and sub-
harmonics). We include a term € in (8.2), representing the rate of input

aThere is also a similar equation for the mean helicity which involves a dissipative term
—v < w-V Xw >; however, since helicity is not sign-definite, positive helicity generation
at one scale can be compensated by negative helicity generation at another, even ne-
glecting the effect of viscosity. This means that the concept of a ‘helicity cascade’ must
be treated with caution.
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of energy to the turbulence by some stirring mechanism on a scale L; on
dimensional grounds, the level of turbulent energy generated is then of order

ug = (u?) ~ (eL)?/3, (8.3)
and we assume that
Re =ugL/v >>1. (8.4)
Under statistically steady conditions, from (8.2),

(w?) = ¢/v, (8.5)

from which we note immediately that the enstrophy <w2> — oo as v — 0.

The picture then, as conceived by Richardson (1926) and formalised by
Kolmogorov (1941), is that energy cascades at a rate € from scales of order
L down to scales of order [,(<< L) at which viscous effects can dissipate
the energy (to heat). The only dimensional parameters on which the scale
[, can depend are € and v, and it therefore follows on dimensional grounds
that

Ly ~ (V3 /)14 (8.6)
It then follows that
l,/L ~ Re 3/%, (8.7)

so that there is indeed a wide range of scales between the ‘energy injection
scale’ L and the ‘dissipation scale’ [,,. It is over this range that the energy
cascade can proceed.

Kolmogorov (1941) theory is concerned with the statistical properties
of turbulence on scales small compared with L, and he assumed that on
such scales, these statistical properties are isotropic and depend only on
the parameters € and v, as well as on the separation variable . Moreover, if
L >>r >> [, (the ‘inertial range’ of scales), then the statistical properties
do not depend on v. Thus, for example, the ‘second-order structure function’
{(u(x+r) —u(x))?) must, on dimensional grounds, have the behaviour

<(u(x +7r)— u(x))2> ~ (e 7“)2/3 . (8.8)

Similarly, the mean-square separation of two fluid particles <(AX)2> must
increase like

{((Ax)?) ~ et?, (8.9)

for so long as this quantity remains within the inertial range, a result fore-
shadowed by Richardson (1926) in an early study of atmospheric diffusion.
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This is more rapid than conventional diffusion in three dimensions with
diffusivity D, namely <(AX)2> ~ 6Dt, because, as the particles separate,
eddies on progressively larger scales contribute to the diffusive process.

An equivalent formulation of the energy cascade in wave-number space
(Obukhov, 1941) gives a result for the energy spectrum function E(k) equiv-
alent to (8.8), namely

E(k)=CB3k>7 (LIl'<k<k, =171, (8.10)
This function E(k) is defined in such a way that

{(u(x)*) =2 /OOO E(k)dk, (8.11)

so that E(k)dk is the contribution to the mean kinetic energy from wave-
numbers in the spherical shell {k, k4 dk} in wave-number space. According
to the theory, the dimensionless constant C' should be the same in all fields
of turbulence, irrespective of the nature of the source of energy on scales of
order L, and irrespective of the context, whether environmental, meteoro-
logical, astrophysical, or whatever. The first convincing evidence for a k—5%/3
spectral range came from measurements of turbulence at a Reynolds num-
ber of order 108 in the tidal channel to the east of Vancouver Island by Grant
et al. (1962). Since then, the Kolmogorov theory (sketched schematically in
figure 7 has provided the bedrock of our understanding of turbulence.

Yet all was not well with the theory, as Kolmogorov (1962) himself rec-
ognized; for the rate of dissipation of energy is itself a function of position
and time: € = €(x,t), and in regions where ¢ > (¢), the energy cascade
presumably proceeds more vigorously, a runaway effect that is now known
to generate ‘intermittency’ in a field of turbulence, i.e. regions of relatively
intense vorticity imbedded in more quiescent regions, very much as re-
vealed by DNS. Although intermittency has at most a weak effect on the
second-order structure function and on the energy spectrum function (the
k—5/3_law being apparently quite robust), higher-order statistics are more
seriously affected, and the conceptual basis for the Kolmogorov theory is
seriously undermined. Huge research effort has been devoted to the problem
of intermittency (see, for example, Frisch (1995)), but it seems fair to say
that the phenomenon still poses a great challenge to theoreticians.

A further great challenge that remains concerns the behaviour in the
‘dissipation range’ of wave-numbers k ~ k, and greater, where k, = [} =
(¢/v3)'/*. Here the experimental evidence is that E(k) decays exponentially
for k > k,, implying smoothness of the velocity field at the smallest scales
(always of course within the limits of a continuum description). On the other
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Fig. 7. Energy cascade according to the Kolmogorov-Obukhov scenario; energy is sup-
plied to the turbulence at a rate € on scales of order L, and is dissipated at wave-numbers
of order ky, = (¢/v3)/4; for wave-numbers in the inertial range L~! < k < k,, the en-
ergy spectrum function follows a k~5/3 power law.

hand, we have the result (8.5) implying the divergence of enstrophy as v —
0. This brings us back to the problem posed at the outset of precisely how
the energy of turbulence is dissipated at the smallest scales. The Burgers
model of section 4 provides an important clue and starting point, but the
crucial problem of the interaction of skewed vortices, as detected in DNS,
remains of central importance at these smallest scales. We may note that,
at a Reynolds number of order 10® as in the Vancouver tidal channel, if
L ~ 1km, then I, ~ Re3/*L ~ 1 mm; this range of scales from kilometres
down to millimetres in a 3D field of turbulence is far beyond what can be
simulated in even the most powerful supercomputers of the current era;
hence the continuing need for theoretical analysis of turbulence in parallel
with experimental observation and carefully crafted numerical simulation.

In this brief introduction to the huge subject of vortex dynamics and
turbulence, we have only been able to scrape the surface. Many books are
now available for students wishing to pursue the subject in depth. Notable
among these is the two-volume encyclopedic work of Monin and Yaglom
(1975). The more recent volumes of Davidson (2004) and Sagaut and Cam-
bon (2008) bear testimony to the continuing vitality of the subject. These
and other books are distinguished by two asterisks (**) in the list of refer-
ences that follows.
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I thank Mark Hallworth for help with preparation of the figures.
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