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A B S T R A C T

We study the convergence of Hermitian Dynamic Mode Decomposition (DMD) to the spectral properties of
self-adjoint Koopman operators. Hermitian DMD is a data-driven method that approximates the Koopman
operator associated with an unknown nonlinear dynamical system, using discrete-time snapshots. This approach
preserves the self-adjointness of the operator in its finite-dimensional approximations. We prove that, under
suitably broad conditions, the spectral measures corresponding to the eigenvalues and eigenfunctions computed
by Hermitian DMD converge to those of the underlying Koopman operator. This result also applies to skew-
Hermitian systems (after multiplication by 𝑖), applicable to generators of continuous-time measure-preserving
systems. Along the way, we establish a general theorem on the convergence of spectral measures for finite
sections of self-adjoint operators, including those that are unbounded, which is of independent interest to
the wider spectral community. We numerically demonstrate our results by applying them to two-dimensional
Schrödinger equations.
1. Introduction

We consider discrete-time dynamical systems of the form:

𝐱𝑛+1 = 𝐅(𝐱𝑛), 𝑛 ∈ N, (1.1)

where 𝐱 ∈ 𝛺 denotes the state of the system, and 𝛺 ⊆ R𝑑 is the state-
space for 𝑑 ∈ N. The (typically) nonlinear function 𝐅 ∶ 𝛺 → 𝛺 governs
the system’s evolution and is unknown. We assume that our knowledge
of the system is limited to 𝑀 ≥ 1 discrete-time snapshots of the system,
i.e., one has only access to a finite dataset of the form
{

𝐱(𝑚), 𝐲(𝑚)
}𝑀
𝑚=1 , such that 𝐲(𝑚) = 𝐅(𝐱(𝑚)), 1 ≤ 𝑚 ≤𝑀 . (1.2)

This snapshot data can be collected from either one long trajectory
or multiple shorter trajectories and acquired via experimental obser-
vations or numerical simulations. In general, one aims to use this data
to infer and reconstruct properties of the underlying dynamical system
given by (1.1). With the arrival of big data and machine learning, this
data-driven viewpoint is currently undergoing a renaissance. Examples
of applications of this framework arise naturally across many scientific
fields, including fluid dynamics [1], epidemiology [2], chemistry [3],
and neuroscience [4], to name a few.

One of the most prominent algorithms for data-driven analysis of
dynamical systems is Dynamic Mode Decomposition (DMD), which is
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closely connected with Koopman operators. In 1931, Koopman intro-
duced an operator-theoretic approach to dynamical systems, initially
to describe Hamiltonian systems [5]. This theory was further expanded
by Koopman and von Neumann [6] to include systems with continuous
spectra. A Koopman operator  lifts a nonlinear system (1.1) into an
infinite-dimensional space of observable functions 𝑔 ∶ 𝛺 → C as

[𝑔](𝐱) = 𝑔(𝐅(𝐱)), such that [𝑔](𝐱𝑛) = 𝑔(𝐱𝑛+1) for 𝑛 ≥ 0.

Through this approach, the evolution dynamics become linear, enabling
the use of generic solution techniques based on spectral decomposi-
tions. DMD was initially developed in the context of fluid dynamics [1,
7]. Earlier, Mezić introduced the Koopman mode decomposition [8],
providing a theoretical basis for Rowley et al. to connect DMD with
Koopman operators [2]. However, the standard DMD algorithm is based
on linear observables and generally fails to capture truly nonlinear
phenomena. To address this limitation, Extended DMD (EDMD) [9]
extends the DMD algorithm to nonlinear observables. Then, under
suitable conditions, in the large-data limit 𝑀 → ∞, EDMD converges
to the numerical approximation obtained by a Galerkin method in the
limit of large data sets. At its core, EDMD is a projection method that
aims to compute the spectral properties of Koopman operators. It is
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important to realize that EDMD only converges in the strong operator
topology to  [10]1 and its spectral properties need not converge [11,
Example 2]. For ways of overcoming this and classifications of how
difficult Koopman spectral computations are, see [12].

In a recent paper [13], Baddoo et al. provided a unified framework,
Physics-Informed Dynamic Mode Decomposition (piDMD), for imposing
physical constraints in DMD with a linear choice of dictionary. For
some constraints, this framework can be extended to the setting of
EDMD, thus providing an approximation of Koopman operators in the
spirit of geometric integration [14]. A scenario where it is possible
o extend piDMD to nonlinear observables occurs when the Koop-
an operator associated with the dynamical system is Hermitian, and

ne aims to compute finite-dimensional Hermitian approximations to
reserve spectral properties. The corresponding algorithm, known as
ermitian Dynamic Mode Decomposition, has been studied extensively
y Drmač [15]. However, there is currently no proof of convergence
f this method to the spectral properties of the underlying Koopman

operator, despite encouraging numerical results [13,15].
This note addresses this gap by showing the convergence of Her-

mitian Dynamic Mode Decomposition to the spectral properties of self-
adjoint Koopman operators. Along the way, we derive Theorem 4.5,
a result that may be of independent interest in the wider spectral
community. For methods that compute spectral measures of general
self-adjoint systems, see [16,17]. All of our results naturally extend
to the case when the Koopman operator is skew-Hermitian, another
structure of broad interest. As an example, Koopman generators of
invertible measure-preserving continuous-time dynamical systems are
skew-adjoint. Hence, our analysis carries over to the application of
skew) Hermitian DMD to DMD methods that approximate such gen-

erators [18]. Our results can also be extended to stochastic dynamical
ystems and the stochastic Koopman operator [19–22].

It is worth pointing out the myriad of papers on Koopman operators
and DMD, as evidenced by various surveys [23–28]. For example, the
survey [25] characterizes structure-preserving methods as one of the
flavors of DMD. Despite this widespread interest, convergence results
pertaining to the relevant spectral properties of Koopman operators
remain decidedly rare. Exceptions to this rule include methods with
theoretical guarantees, such as Hankel-DMD [29], Residual DMD [30–
32], Rigged DMD [33], Measure-Preserving EDMD [34], compactification
methods [35,36], and periodic approximation methods [37,38]. While
related to the present note, the latter four approaches assume that the
system is measure-preserving, which differs from the setup addressed
here. Given the keen interest in convergence results, we hope this note
will encourage further exploration into the conditions under which
methods like piDMD converge.

The rest of the paper is organized as follows. We provide pre-
iminaries in Section 2 on Koopman operators and EDMD. Then, in
ection 3, we recall and derive Hermitian DMD in the context of EDMD.

Finally, Section 4 contains our main convergence results, which are
demonstrated numerically in Section 5.

2. Preliminaries

In this section, we provide preliminaries on Koopman operators,
EDMD, and the role of spectral measures for self-adjoint Koopman
operators.

1 Essentially, this means that the action of EDMD on observables converges
o the action of the Koopman operator on observables. This form of conver-
ence implies that limit points of eigenpairs of EDMD are also eigenpairs of
he Koopman operator if the limiting vector is non-zero [10, Theorem 4]. As

the authors of [10] highlight, this is an extremely weak form of convergence.
 T

2 
2.1. Koopman operators

To define a Koopman operator, we begin with a space  of functions
𝑔 ∶ 𝛺 → C, where 𝛺 is the state space of our dynamical system.
The functions 𝑔, referred to as observables, serve as tools for indirectly
measuring the state of the system described in (1.1). Specifically,
𝑔(𝐱𝑛) indirectly measures the state 𝐱𝑛. Koopman operators enable us
o capture the time evolution of these observables through a linear
perator framework. For a suitable domain () ⊂  , we define the
oopman operator via the composition formula:

[𝑔](𝐱) = [𝑔◦𝐅](𝐱) = 𝑔(𝐅(𝐱)), 𝑔 ∈ (). (2.1)

In this context, [𝑔](𝐱𝑛) = 𝑔(𝐅(𝐱𝑛)) = 𝑔(𝐱𝑛+1) represents the measure-
ent of the state one time step ahead of 𝑔(𝐱𝑛). This process effec-

ively captures the dynamic progression of the system. The overarching
oncept is summarized in Fig. 1.

The key property of the Koopman operator  is its linearity. This
linearity holds irrespective of whether the system’s dynamics, as rep-
resented in (1.1), are linear or nonlinear. Consequently, the spectral
properties of  become a powerful tool to analyze the dynamical
system’s behavior. We focus on cases where  = 𝐿2(𝛺 , 𝜔) is a Hilbert
space with the following inner product

⟨𝑔1, 𝑔2⟩ = ∫𝛺
𝑔1(𝐱)𝑔2(𝐱) d𝜔(𝐱),

for some positive measure 𝜔. In going from a pointwise definition
in (2.1) to the space 𝐿2(𝛺 , 𝜔), a little care is needed since 𝐿2(𝛺 , 𝜔)
onsists of equivalence classes of functions. We assume that the map
is nonsingular with respect to 𝜔, meaning that

𝜔(𝐸) = 0 implies 𝜔({𝐱 ∶ 𝐅(𝐱) ∈ 𝐸}) = 0.
This ensures that the Koopman operator is well-defined since 𝑔1(𝐱) =
𝑔2(𝐱) for 𝜔-almost every 𝐱 implies that 𝑔1(𝐅(𝐱)) = 𝑔2(𝐅(𝐱)) for 𝜔-almost
very 𝐱.

The above Hilbert space setting is standard in most of the Koopman
iterature. It is crucial to recognize that the Koopman operator is not
niquely defined by the dynamical system in (1.1); rather, it is funda-

mentally dependent on the choice of the space of observables  . Since
 acts on an infinite-dimensional function space, we have exchanged
the nonlinearity in (1.1) for an infinite-dimensional linear system. This
means that the spectral properties of  can be significantly more
complex than those of a finite matrix, making them more challenging
o compute [39,40].

2.2. Extended dynamic mode decomposition

The objective of EDMD is to approximate the action of the Koopman
operator  on a finite-dimensional vector space of functions by a matrix
𝐊. For the sake of simplicity, the initial formulation of EDMD assumes
that the sample points {𝐱(𝑚)}𝑀𝑚=1 in the snapshot dataset are indepen-
dently sampled from the distribution 𝜔. In this section, we consider the
oints 𝐱(𝑚) as quadrature nodes used for integration with respect to the
easure 𝜔. This adaptability enables the choice of quadrature weights

ailored to different scenarios.
One first chooses a dictionary of functions {𝜓1,… , 𝜓𝑁}, i.e., a list

of observables, in the space () ⊂ 𝐿2(𝛺 , 𝜔). These observables form
a finite-dimensional subspace 𝑉𝑁 = span{𝜓1,… , 𝜓𝑁}. EDMD consists
of selecting a matrix 𝐊 ∈ C𝑁×𝑁 that approximates the action of 
confined to this subspace, such that for 1 ≤ 𝑗 ≤ 𝑁 we have,

[𝜓𝑗 ](𝐱) = 𝜓𝑗 (𝐅(𝐱)) ≈
𝑁
∑

𝑖=1
𝐊𝑖𝑗𝜓𝑖(𝐱).

We define the vector-valued feature map, Ψ ∶ 𝛺 → C𝑁 , as

Ψ(𝐱) = [

𝜓1(𝐱) ⋯ 𝜓𝑁 (𝐱)
]

∈ C1×𝑁 , 𝐱 ∈ 𝛺 . (2.2)

Any function 𝑔 ∈ 𝑉𝑁 can be expressed as a linear combination of the
asis functions as 𝑔(𝐱) = ∑𝑁

𝑗=1 𝜓𝑗 (𝐱)𝐠𝑗 = Ψ(𝐱) 𝐠, for some vector 𝐠 ∈ C𝑁 .
herefore,
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Fig. 1. Summary of the idea of Koopman operators. By lifting to a space of observables, we trade a nonlinear finite-dimensional system for a linear infinite-dimensional system.
[𝑔](𝐱) = Ψ(𝐅(𝐱)) 𝐠 = Ψ(𝐱)(𝐊 𝐠) +
𝑁
∑

𝑗=1
𝜓𝑗 (𝐅(𝐱))𝐠𝑗 −Ψ(𝐱)(𝐊 𝐠)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝑅(𝐠,𝐱)

.

In general, 𝑉𝑁 is not an invariant subspace of . Hence, there is no
choice of 𝐊 that makes the residual 𝑅(𝐠, 𝐱) zero for all 𝑔 ∈ 𝑉𝑁 and
𝜔-almost every 𝐱 ∈ 𝛺. Instead, it is natural to select the matrix 𝐊 to
minimize the residual:

𝐊 = argmin
𝐊∈C𝑁×𝑁 ∫𝛺

max
𝐠∈C𝑁

‖𝐂𝐠‖
𝓁2 =1

|𝑅(𝐠, 𝐱)|2 d𝜔(𝐱)

= argmin
𝐊∈C𝑁×𝑁 ∫𝛺

‖

‖

‖

Ψ(𝐅(𝐱))𝐂−1 −Ψ(𝐱)𝐊𝐂−1‖
‖

‖

2

𝓁2
d𝜔(𝐱).

(2.3)

Here, 𝐂 ∈ R𝑁×𝑁 is a positive self-adjoint matrix that controls the size of
𝑔 = Ψ𝐠. One should interpret the matrix 𝐂 as choosing an appropriate
norm. This becomes important when 𝑁 → ∞ since not all the norms
defined on an infinite-dimensional vector space are equivalent.

While it is not possible to directly evaluate the integral in (2.3) from
the snapshot data, one can instead approximate it via a quadrature rule
with nodes {𝐱(𝑚)}𝑀𝑚=1 and weights {𝑤𝑚}𝑀𝑚=1. For notational convenience,
we introduce the weight matrix 𝐖 = diag(𝑤1,… , 𝑤𝑀 ) and the matrices

Ψ𝑋 =
⎛

⎜

⎜

⎝

Ψ(𝐱(1))
⋮

Ψ(𝐱(𝑀))

⎞

⎟

⎟

⎠

∈ C𝑀×𝑁 , and Ψ𝑌 =
⎛

⎜

⎜

⎝

Ψ(𝐲(1))
⋮

Ψ(𝐲(𝑀))

⎞

⎟

⎟

⎠

∈ C𝑀×𝑁 .

After discretizing (2.3), one obtains the following weighted least-
squares problem:

𝐊 = argmin
𝐊∈C𝑁×𝑁

𝑀
∑

𝑚=1
𝑤𝑚

‖

‖

‖

Ψ(𝐲(𝑚))𝐂−1 −Ψ(𝐱(𝑚))𝐊𝐂−1‖
‖

‖

2

2

= argmin
𝐊∈C𝑁×𝑁

‖

‖

‖

𝐖1∕2Ψ𝑌𝐂−1 −𝐖1∕2Ψ𝑋𝐊𝐂−1‖
‖

‖

2

F
,

(2.4)

where ‖ ⋅ ‖F denotes the Frobenius norm. By reducing the size of the
dictionary if necessary, we may assume without loss of generality that
𝐖1∕2Ψ𝑋 has rank 𝑁 . A solution to (2.4) is given by

𝐊 = (𝐖1∕2Ψ𝑋 )†𝐖1∕2Ψ𝑌 = (Ψ∗
𝑋𝐖Ψ𝑋 )†Ψ∗

𝑋𝐖Ψ𝑌 ,

where † denotes the Moore–Penrose pseudoinverse. Note that this
solution is independent of the matrix 𝐂. However, a suitable choice of 𝐂
is vital once constraints on the matrix 𝐊 are added to the optimization
problem in (2.3) [34]. In the case where the quadrature weights are
equal and Ψ is the state (i.e., a linear dictionary), then 𝐊⊤ is the
transpose of the classical DMD matrix.
3 
We now define the two correlation matrices 𝐆 ∈ C𝑁×𝑁 and 𝐀 ∈
C𝑁×𝑁 :

𝐆 = Ψ∗
𝑋𝐖Ψ𝑋 =

𝑀
∑

𝑚=1
𝑤𝑚Ψ(𝐱(𝑚))∗Ψ(𝐱(𝑚)),

𝐀 = Ψ∗
𝑋𝐖Ψ𝑌 =

𝑀
∑

𝑚=1
𝑤𝑚Ψ(𝐱(𝑚))∗Ψ(𝐲(𝑚)).

(2.5)

If we consider the discrete measure 𝜔𝑀 =
∑𝑀
𝑚=1𝑤𝑚𝛿𝐱(𝑚) , then

𝐆𝑗 𝑘 = ∫𝛺
𝜓𝑗 (𝐱)𝜓𝑘(𝐱) d𝜔𝑀 (𝐱), 𝐀𝑗 𝑘 = ∫𝛺

𝜓𝑗 (𝐱)𝜓𝑘(𝐅(𝐱)) d𝜔𝑀 (𝐱).

Additionally, if the quadrature discretization converges as the number
of data points 𝑀 → ∞, then we have

lim
𝑀→∞

𝐆𝑗 𝑘 = ⟨𝜓𝑘, 𝜓𝑗⟩, and lim
𝑀→∞

𝐀𝑗 𝑘 = ⟨𝜓𝑘, 𝜓𝑗⟩. (2.6)

Therefore, in the large data limit, 𝐊 = 𝐆†𝐀 approaches a matrix
representation of the operator 𝑉𝑁∗

𝑉𝑁
, where 𝑉𝑁 ∶ 𝐿2(𝛺 , 𝜔) → 𝑉𝑁

denotes the orthogonal projection onto the subspace 𝑉𝑁 . In essence,
EDMD is a Galerkin method. The EDMD eigenvalues thus approach the
spectrum of 𝑉𝑁∗

𝑉𝑁
, and EDMD is an example of the so-called finite

section method [41].

2.3. Spectral measures of self-adjoint Koopman operators

If 𝑔 ∈ 𝐿2(𝛺 , 𝜔) is an eigenfunction of  with eigenvalue 𝜆, then 𝑔
exhibits perfect coherence2 with

𝑔(𝐱𝑛) = [𝑛𝑔](𝐱0) = 𝜆𝑛𝑔(𝐱0), 𝑛 ∈ N. (2.7)

The oscillation and decay/growth of the observable 𝑔 are dictated
by the complex argument and absolute value of the eigenvalue 𝜆,
respectively. In infinite dimensions, the appropriate generalization of
the set of eigenvalues of  is the spectrum, denoted by Sp(), and
defined as

Sp()

=
{

𝑧 ∈ C ∶ ( − 𝑧𝐼)−1 does not exist as a bounded operator
}

⊂ C.

Here, 𝐼 denotes the identity operator. The spectrum Sp() includes the
set of eigenvalues of , but in general, Sp() contains points that are
not eigenvalues. This is because there are more ways for ( − 𝑧𝐼)−1 to
not exist in infinite dimensions than in finite dimensions. For example,
we may have continuous spectra.

2 In the setting of dynamical systems, coherent sets or structures are subsets
of the phase space where elements (e.g., particles, agents, etc.) exhibit similar
behavior over some time interval. This behavior remains relatively consistent
despite potential perturbations or the chaotic nature of the system.
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From now on, we assume that  is a self-adjoint operator acting on
2(𝛺 , 𝜔). Under this condition, the spectral theorem3 [43, Thm. X.4.11]

allows us to diagonalize the Koopman operator , and its spectrum
Sp() lies within the real line R since  is self-adjoint. There is a
rojection-valued measure  supported on Sp(), which associates an
rthogonal projector with each Borel measurable subset of R. For such

a subset 𝑆 ⊂ R, (𝑆) is a projection onto the spectral elements of 
inside 𝑆. For any observable 𝑔 ∈ (),

𝑔 =
(

∫R
d(𝜆)

)

𝑔 and 𝑔 =
(

∫R
𝜆 d(𝜆)

)

𝑔 .

The essence of this formula is the decomposition of 𝑔 according to the
pectral content of . The projection-valued measure  simultaneously
ecomposes the space 𝐿2(𝛺 , 𝜔) and diagonalizes the Koopman operator.

For example, if 𝑔 ∈ (𝑛), we have

𝑔(𝐱𝑛) = [𝑛𝑔](𝐱0) =
[(

∫R
𝜆𝑛 d(𝜆)

)

𝑔
]

(𝐱0). (2.8)

The spectral theorem offers a custom Fourier-type transform specifi-
cally for the operator  that extracts coherent features. Scalar-valued
spectral measures are of particular interest. Hence, given a normalized
observable 𝑔 ∈ 𝐿2(𝛺 , 𝜔) with ‖𝑔‖ = 1, the scalar-valued spectral
measure of  with respect to 𝑔 is a probability measure defined as

𝜇𝑔(𝑆) = ⟨(𝑆)𝑔 , 𝑔⟩.
The spectral measure of  with respect to 𝑔 ∈ 𝐿2(𝛺 , 𝜔) is a signature
or the forward-time dynamics of (1.1). In this paper, we show that the

spectral measures computed by Hermitian DMD converge to those of
.

3. Hermitian dynamic mode decomposition

When the Koopman operator  is Hermitian, i.e.,  = ∗, a
atural constraint is to preserve the Hermitian property on its finite-
imensional approximation, 𝐊. This ensures that the spectral properties
f 𝐊 are consistent with those of  as the size of the dictionary
ncreases. Generally, the solution to (2.4) is not Hermitian, and diverse
trategies have been proposed to enforce this constraint [15]. Here, we

consider the Hermitian DMD algorithm introduced in [13].
First, given the Gram matrix 𝐆 = Ψ∗

𝑋𝐖Ψ𝑋 , one can approximate
he inner product ⟨⋅, ⋅⟩ on 𝐿2(𝛺 , 𝜔) via the inner product induced by 𝐆

as

⟨Ψ𝐠,Ψ𝐡⟩ =
𝑁
∑

𝑗 ,𝑘=1
ℎ𝑗𝑔𝑘⟨𝜓𝑘, 𝜓𝑗⟩ ≈

𝑁
∑

𝑗 ,𝑘=1
ℎ𝑗𝑔𝑘𝐆𝑗 ,𝑘 = 𝐡∗𝐆𝐠. (3.1)

If (2.6) holds, then this approximation converges to the inner product
on 𝐿2(𝛺 , 𝜔) in the large data limit as 𝑀 → ∞. We follow the EDMD
pproach described in Section 2.2 but enforce the additional constraint
hat the matrix representation of the Koopman operator is self-adjoint
ith respect to the inner product induced by the matrix 𝐆. Hence, we

consider the following constrained least-square problem:

𝐊 = argmin
𝐊∈C𝑁×𝑁
𝐆𝐊=𝐊∗𝐆

𝑀
∑

𝑚=1

‖

‖

‖

Ψ(𝐲(𝑚))𝐆−1∕2 −Ψ(𝐱(𝑚))𝐊𝐆−1∕2‖
‖

‖

2

2

= argmin
𝐊∈C𝑁×𝑁
𝐆𝐊=𝐊∗𝐆

‖

‖

‖

𝐖1∕2Ψ𝑌𝐆−1∕2 −𝐖1∕2Ψ𝑋𝐊𝐆−1∕2‖
‖

‖

2

F
.

After performing the change of variables 𝐁 = 𝐆1∕2𝐊𝐆−1∕2, we obtain

min
𝐁∈C𝑁×𝑁

𝐁∗=𝐁

‖

‖

‖

𝐖1∕2Ψ𝑌𝐆−1∕2 −𝐖1∕2Ψ𝑋𝐆−1∕2𝐁‖‖
‖

2

F
. (3.2)

Here, we recognize a symmetric Procrustes problem [13,44] of the form

3 For readers unfamiliar with the spectral theorem, [42] provides an
xcellent and readable introduction.
 o

4 
min
𝐌∈C𝑁×𝑁
𝐌∗=𝐌

‖𝐘 − 𝐗𝐌‖

2
F .

A solution can be computed from the economized singular value de-
composition of the matrix 𝐗 = 𝐔𝛴𝛴𝛴𝐕∗, where 𝛴𝛴𝛴 is the 𝑁 ×𝑁 diagonal
matrix containing the singular values 𝜎1 ≥ 𝜎2 ≥ ⋯ ≥ 𝜎𝑁 ≥ 0.
The solution is given by the matrix 𝐌 = 𝐕𝛶𝛶𝛶𝐕∗, where the entries of
Hermitian matrix 𝛶𝛶𝛶 ∈ C𝑁×𝑁 are defined by

𝛶 𝑖𝑗 =

⎧

⎪

⎨

⎪

⎩

𝜎𝑖𝑐𝑖𝑗+𝜎𝑗 𝑐𝑗 𝑖
𝜎2𝑖 +𝜎

2
𝑗
, if 𝜎2𝑖 + 𝜎

2
𝑗 ≠ 0,

0, otherwise,

for 1 ≤ 𝑖, 𝑗 ,≤ 𝑁 . Here, the coefficients 𝑐𝑖𝑗 are the entries of the
matrix 𝐂 = 𝐔∗𝐘𝐕. As observed by Higham [44], this algorithm is
ackward stable following the backward stability of the Golub–Reinsch

SVD algorithm [45, Sec. 5.5.8].
We make an additional observation compared to the original for-

mulation in [13], which considerably simplifies the algorithm to solve
(3.2). In the case of (3.2), we have 𝐗 = 𝐖1∕2Ψ𝑋𝐆−1∕2 and 𝐘 =
𝐖1∕2Ψ𝑌𝐆−1∕2, and the symmetric Procrustes algorithm can be simpli-
fied since 𝐗∗𝐗 = 𝐈, the identity matrix. Hence, one can select 𝛴𝛴𝛴 and 𝐕
to be the identity matrices, and the solution becomes

𝐊 = 𝐆−1∕2𝐁𝐆1∕2 = 𝐆−1
(

𝐀 + 𝐀∗

2

)

. (3.3)

Therefore, if the convergence in (2.6) holds, the large data limit of
Hermitian DMD becomes a Galerkin approximation of the Koopman
operator since ⟨𝜓𝑘, 𝜓𝑗⟩ = ⟨𝜓𝑘,𝜓𝑗⟩. Additionally, the formula given
by (3.3) is more computationally efficient than the standard symmetric
Procrustes approach employed in [13] as it avoids the computation of
the SVD of 𝐗, as well as a matrix square-root, which can be numerically
unstable when 𝐆 is ill-conditioned.

Given this convergence result, it is natural to study the convergence
of this approximation as the size of the dictionary increases. It is well-
known that spectra of Galerkin approximations of operators can suffer
from discretization issues such as spectral pollution (spurious eigenval-
ues), spectral invisibility (missing parts of the spectrum), instabilities,
and so forth [46–48]. These issues occur and, in fact, can worsen as the
ictionary’s size increases. Hence, the convergence of the Hermitian
MD algorithm might be difficult to establish. Nevertheless, we will

show in Section 4 that the (scalar-valued) spectral measures converge
weakly, thus providing theoretical guarantees for Hermitian DMD. One
crucial property exploited in the proof is the self-adjointness of the
finite-dimensional approximations, as imposed by Hermitian DMD.

4. A general convergence result

Throughout this section, we consider an arbitrary self-adjoint oper-
ator  acting on a Hilbert space  with domain (). For example,
the differential operator −d2∕d𝑥2 on 𝐿2(R) is self-adjoint with domain
{𝑔 ∈ 𝐿2(R) ∶ 𝑔′′ ∈ 𝐿2(R)}. This is an example of an unbounded operator
(recall that an operator 𝐴 is bounded if sup𝑥∈(𝐴),‖𝑥‖=1 ‖𝐴𝑥‖ < ∞).
Moreover, the operators in this section need not be Koopman operators.
Let {𝑛 ∶  → 𝑛}𝑛∈N be a sequence of orthogonal projections onto a
Hilbert space 𝑛 ⊂ , such that ∗

𝑛𝑛 converges strongly to the identity,
meaning that

lim
𝑛→∞

‖∗
𝑛𝑛𝑢 − 𝑢‖ = 0, 𝑢 ∈ .

We also assume that 𝑛 ⊂ (). We are interested in the spectral
easure of  with respect to a vector 𝑣 ∈ , which we denote by
𝑣. We let 𝜇𝑣,𝑛 represent the scalar-valued spectral measure of 𝑛∗

𝑛
ith respect to the vector 𝑛𝑣 ∈ 𝑛. We will show that the spectral
easures 𝜇𝑣,𝑛 converge weakly to 𝜇𝑣. While this is a well-known result

or bounded self-adjoint operators, the standard proof does not carry

ver to the unbounded case, which requires a different approach.
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4.1. Bounded operators - the easy case

The case when  is bounded is well-known. The following standard
proof of convergence essentially boils down to a moment-matching
procedure.

Lemma 4.1. Consider the above setup and suppose that  is bounded.
Then, for any bounded, continuous, function 𝜙 on R and for any 𝑣 ∈ ,

lim
𝑛→∞∫R

𝜙(𝜆) d𝜇𝑣,𝑛(𝜆) = ∫R
𝜙(𝜆) d𝜇𝑣(𝜆). (4.1)

In particular, 𝜇𝑣,𝑛 converges weakly to 𝜇𝑣 as 𝑛→ ∞.

Proof. Since ‖𝑛∗
𝑛 ‖ ≤ ‖‖, Sp(𝑛∗

𝑛 ) is contained in some finite
ixed interval. Since the support of 𝜇𝑣,𝑛 is contained in Sp(𝑛∗

𝑛 ),
ithout loss of generality, we assume that 𝜙 is supported on a finite

nterval. Since any such function can be approximated to arbitrary
ccuracy by a polynomial, it is enough to prove (4.1) for 𝜙(𝜆) = 𝜆𝑘,

for any 𝑘 ∈ Z≥0. In other words, it is enough to show that the moments
of the measures converge.

The functional calculus shows that

∫R
𝜆𝑘 d𝜇𝑣,𝑛(𝜆) = ⟨∗

𝑛 (𝑛
∗
𝑛 )
𝑘𝑛𝑣, 𝑣⟩, ∫R

𝜆𝑘 d𝜇𝑣(𝜆) = ⟨𝑘𝑣, 𝑣⟩.

Since  is bounded and ∗
𝑛𝑛 converges strongly to the identity,

∗
𝑛 (𝑛

∗
𝑛 )
𝑘𝑛 = ∗

𝑛𝑛(
∗
𝑛𝑛)

𝑘

converges strongly to 𝑘 for any 𝑘 ∈ Z≥0. It follows that ∗
𝑛 (𝑛

∗
𝑛 )
𝑘𝑛𝑣

onverges weakly to 𝑘𝑣. The convergence in (4.1) follows. □

Remark 4.2. Note that we proved strong convergence of the sequence
f operators ∗

𝑛 (𝑛
∗
𝑛 )
𝑘𝑛. The proof, therefore, automatically up-

rades the lemma to weak convergence (in the sense of measures) of
rojection-valued spectral measures in the strong operator topology.

The above proof cannot be carried over to unbounded operators
since the moments may not exist. Instead, we replace the polynomials
appearing in the proof of Lemma 4.1 with rational functions. To do this,
we must look at the resolvent.

4.2. Strong convergence of the resolvent

To deal with unbounded operators, we make the following assump-
ion.

Assumption 4.3. There exists a core 𝑆 ⊂ () such that

lim
→∞

∗
𝑛𝑛𝑢 = 𝑢, lim

𝑛→∞
∗
𝑛𝑛𝑢 = 𝑢 ∀𝑢 ∈ 𝑆 .

Without such assumptions, spectral measures need not
converge [49, Theorem 2.3]. The following lemma shows that with this
assumption, the resolvents of our projected operators converge strongly
to the resolvent of . For a discussion of these kinds of results, see [50,
Chapter VIII] and [51,52].

Lemma 4.4. Suppose that Assumption 4.3 holds. Then
lim
→∞

∗
𝑛 [𝑛( − 𝑧𝐼)∗

𝑛 ]
−1𝑛𝑣 = ( − 𝑧𝐼)−1𝑣, ∀𝑣 ∈ , 𝑧 ∈ C∖R.

Proof. Fix 𝑧 ∈ C∖R and suppose first that there exists 𝑢 ∈ 𝑆 with
 − 𝑧𝐼)−1𝑣 = 𝑢. For notational convenience, let 𝑇𝑛 = [𝑛( − 𝑧𝐼)∗

𝑛 ]
−1,

hich exists since Sp(𝑛∗
𝑛 ) ⊂ R. We may write

∗
𝑛𝑛( − 𝑧𝐼)−1𝑣 = ∗

𝑛𝑛𝑢 = ∗
𝑛 𝑇𝑛𝑛

∗
𝑛 [𝑛( − 𝑧𝐼)∗

𝑛 ]𝑛𝑢.

This quantity converges to (−𝑧𝐼)−1𝑣, and hence it is enough to prove
hat
5 
lim
𝑛→∞

∗
𝑛 𝑇𝑛𝑛𝑣 − ∗

𝑛 𝑇𝑛𝑛
∗
𝑛 [𝑛( − 𝑧𝐼)∗

𝑛 ]𝑛𝑢 = 0.
The quantity on the left is equal to
∗
𝑛 𝑇𝑛𝑛

[

( − 𝑧𝐼) − ∗
𝑛𝑛( − 𝑧𝐼)∗

𝑛𝑛
]

𝑢.

Since ‖𝑇𝑛‖ ≤ 1∕|Im(𝑧)|, Assumption 4.3 shows that this converges to
zero. Hence, to prove the lemma, we must show that we can drop the
ssumption that 𝑢 ∈ 𝑆. Let 𝑢 = (− 𝑧𝐼)−1𝑣 be general, then there exists
 sequence {𝑢𝑚} ⊂ 𝑆 with lim𝑚→∞ 𝑢𝑚 = 𝑢 and lim𝑚→∞ 𝑢𝑚 = 𝑢. Let
𝑚 = ( − 𝑧𝐼)𝑢𝑚, then we have just shown that

lim
𝑛→∞

∗
𝑛 [𝑛( − 𝑧𝐼)∗

𝑛 ]
−1𝑛𝑣𝑚 = ( − 𝑧𝐼)−1𝑣𝑚.

Now lim𝑚→∞ 𝑣𝑚 = 𝑣 and ‖𝑇𝑛‖, ‖(−𝑧𝐼)−1‖ ≤ 1∕|Im(𝑧)|. Hence, the result
lso holds with 𝑣. □

4.3. General convergence theorem

We now have all of the tools needed to prove the convergence of
spectral measures. We first prove the general result and then the result
for Hermitian DMD. All the required assumptions are stated explicitly
n the theorems.

Theorem 4.5. Let  be a self-adjoint operator on a Hilbert space 
with domain (). Let {𝑛 ∶  → 𝑛}𝑛∈N be a sequence of orthogonal
projections onto a Hilbert space 𝑛 ⊂ , such that ∗

𝑛𝑛 converges strongly
to the identity and 𝑛 ⊂ (). In addition, suppose that Assumption 4.3
holds. Then, for any 𝑣 ∈  and any bounded continuous function 𝑓 on R,

lim
𝑛→∞∫R

𝑓 (𝜆)d𝜇𝑣,𝑛(𝜆) = ∫R
𝑓 (𝜆)d𝜇𝑣(𝜆), (4.2)

where 𝜇𝑣,𝑛 is the spectral measure of 𝑛∗
𝑛 w.r.t. the vector 𝑣𝑛 = 𝑛𝑣.

Proof. The idea of the proof is to use rational functions in the applica-
tion of the Stone–Weierstrass theorem to first prove vague convergence
of measures, and then upgrade the convergence to weak convergence
using tightness. We first let 𝑓 (𝜆) = 1∕(𝜆−𝑧) for 𝑧 ∈ C∖R. For this choice,
the functional calculus shows that

∫R
𝑓 (𝜆) d𝜇𝑣,𝑛(𝜆) = ⟨∗

𝑛 [𝑛( − 𝑧𝐼)∗
𝑛 ]

−1𝑛𝑣, 𝑣⟩,

∫R
𝑓 (𝜆) d𝜇𝑣(𝜆) = ⟨( − 𝑧𝐼)−1𝑣, 𝑣⟩.

Lemma 4.4 now shows that (4.2) holds for this particular choice
f 𝑓 . The Stone–Weierstrass theorem (for locally compact Hausdorff

spaces) then implies that (4.2) holds if lim
|𝑥|→∞ 𝑓 (𝑥) = 0. To finish the

roof, note that lim𝑛→∞ 𝜇𝑣,𝑛(R) = 𝜇𝑣(R) = ‖𝑣‖2, which implies weak
onvergence given the vague convergence. □

The convergence of Hermitian DMD now follows almost immedi-
tely. For a given observable 𝑔 ∈ 𝐿2(𝛺 , 𝜔), we define

𝐠𝑁 ,𝑀 = (𝐖1∕2Ψ𝑋 )†𝐖1∕2 (𝑔(𝐱(1)),… , 𝑔(𝐱(𝑀))
)⊤ .

such that

lim
𝑀→∞

𝐠𝑁 ,𝑀 = 𝐠𝑁 , with 𝑁𝑔 = Ψ𝐠𝑁 ,

where Ψ is the dictionary feature map in Eq. (2.2). We emphasize that
his is the standard way to compute expansion coefficients in the EDMD
lgorithm.

Theorem 4.6 (Convergence of Hermitian DMD). Consider the space of
functions 𝑉𝑁 = span{𝜓1,… , 𝜓𝑁} and let 𝑁 ∶ 𝐿2(𝛺 , 𝜔) → 𝑉𝑁 be the
corresponding orthogonal projection. Suppose that ∗

𝑁𝑁 converges strongly
to the identity, the Koopman operator  is self-adjoint, the quadrature rule
converges as in (2.6), and that

∗
𝑢 = lim
𝑁→∞

𝑁𝑁𝑁𝑢, 𝑢 ∈ ().
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Fig. 2. The first 6 energy eigenstates and eigenvalues of the Schrödinger operator discovered by Hermitian DMD.
Fig. 3. The first 100 eigenvalues of the Schrödinger operator discovered by Hermitian
DMD along with the exact ones.

Then, for any observable 𝑔 ∈ 𝐿2(𝛺 , 𝜔) and any bounded continuous
function 𝑓 on R,

lim
𝑁→∞

lim
𝑀→∞∫R

𝑓 (𝜆)d𝜇(𝑀)
𝐠𝑁 ,𝑀 (𝜆) = ∫R

𝑓 (𝜆)d𝜇𝑔(𝜆), (4.3)

were 𝜇(𝑀)
𝐠𝑁 ,𝑀 is the spectral measure of Ψ𝐠𝑁 ,𝑀 with respect to the Hermitian

DMD matrix.

Remark 4.7. The use of Hermitian DMD is crucial in Theorem 4.6 to
restrict the least squares problem in (3.2), and ensure that the spectral
measures 𝜇(𝑀)

𝐠𝑁 are supported on R.

Proof of Theorem 4.6. The convergence of Hermitian DMD as 𝑀 → ∞
implies that

lim
𝑀→∞∫R

𝑓 (𝜆)d𝜇(𝑀)
𝐠𝑁 ,𝑀 (𝜆) = ∫R

𝑓 (𝜆)d𝜇𝐠𝑁 (𝜆),

where 𝜇𝐠𝑁 is the spectral measure of 𝑁∗
𝑁 with respect to 𝑁𝑔. The

rest of the proof follows directly from Theorem 4.5. □
6 
5. Numerical example

In this section, we evaluate the convergence of the Hermitian DMD
algorithm on the two-dimensional Schrödinger equation given by

𝑖 𝜕 𝑢
𝜕 𝑡 = �̂�(𝑢) = −1

2
𝛥𝑢 + 𝑉 (𝑥, 𝑦)𝑢, (𝑥, 𝑦) ∈ R2,

where 𝑉 (𝑥, 𝑦) = (𝑥2+𝑦2)∕2 is an external harmonic potential, 𝑢 ∶ 𝛺 → C
is a normalized wave function, and �̂� is the Hamiltonian operator
of the system. Here, we select a computational domain 𝛺 = (−5, 5)2
to be large enough so that solutions vanish well before reaching the
boundary. The snapshot data contain functions of the form (𝑢, 𝑖𝜕𝑡𝑢),
which are related by the self-adjoint Hamiltonian operator �̂� . We
use 𝑁 = 400 initial conditions consisting of Gaussian bumps (the
dictionary) inside 𝛺 as

𝑢(𝑥, 𝑦) = (1 + 𝑖)𝑒−3((𝑥−𝑥𝑖)2+(𝑦−𝑦𝑗 )2), 1 ≤ 𝑖, 𝑗 ≤ 20,

where the Gaussian centers (𝑥𝑖, 𝑦𝑗 ) are uniformly distributed in the
domain [−4, 4]2.4 We then evaluate the functions on the domain 𝛺
at a uniform tensor-product grid of 𝑀 = 3002 snapshot points, and
discretize the integral in (2.3) using a trapezoidal rule. Finally, we com-
pute the 𝑁×𝑁 Koopman matrix 𝐊 using the Hermitian DMD algorithm
described in Section 3, and perform an eigenvalue decomposition of
𝐊 to obtain the first eigenstates and corresponding eigenvalues to the
Schrödinger operator (see Fig. 2).

The analytical expression for the eigenmodes of the Schrödinger
equation are obtained using the standard ansatz 𝑢(𝑥, 𝑦, 𝑡) = 𝜙(𝑥, 𝑦)𝑒−𝑖𝐸 𝑡,
where 𝜙 is the eigenfunction and 𝐸 is the corresponding eigenvalue.
Following a separation of variables, one finds that the eigenmodes are
proportional to [53, Eq. (8)]

𝜙𝑚,𝑛(𝑥, 𝑦) = 𝐻𝑚(𝑥)𝐻𝑛(𝑦)𝑒−(𝑥
2+𝑦2)∕2, (𝑥, 𝑦) ∈ R2, 𝑚, 𝑛 ≥ 0,

where 𝐻𝑚 is the Hermite polynomial of degree 𝑚, and the correspond-
ing eigenvalues are given by 𝐸𝑚,𝑛 = 𝑚 + 𝑛 + 1. We report in Fig. 3 the
first hundred eigenvalues obtained by Hermitian DMD along with the
exact ones and observe a good agreement up to the 50th eigenvalue.

Then, we estimate 𝜇𝑓 for the function 𝑓 defined as

𝑓 (𝑥, 𝑦) = sin(𝜋 𝑥∕5) sin(𝜋 𝑦∕5), (𝑥, 𝑦) ∈ [−5, 5]2.

4 For suitable Gaussian bump functions, one can easily show that
Assumption 4.3 is satisfied for our Schrödinger operator.
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Fig. 4. Visualization of the approximate measures in (5.1). For this example, weak convergence in Theorem 4.6 means that the positions and heights of the spikes converge. The
heights of the spikes, 𝑐𝑗 , can be thought of as an energy distribution akin to a Fourier transform (but now provided by the spectral theorem).
Table 1
Convergence of 𝑐𝑗 (𝜆𝑗 ) in the first five spikes of Fig. 4 for different values of 𝑁 .

𝑁 = 752 3.56 (3.00) 5.79 (5.00) 5.23 (7.00) 4.55 (9.01) 2.77 (11.06)
𝑁 = 1502 3.56 (3.00) 5.79 (5.00) 5.85 (7.00) 4.62 (9.01) 2.77 (11.06)
𝑁 = 3002 3.56 (3.00) 5.79 (5.00) 5.90 (7.00) 4.59 (9.01) 2.86 (11.06)

Exact 3.56 (3.00) 5.79 (5.00) 5.90 (7.00) 4.59 (9.00) 2.86 (11.00)
R

The measure 𝜇𝑓 ,𝑛 is given as a sum of Dirac measures

𝜇𝑓 ,𝑁 =
𝑁
∑

𝑗=1
𝑐𝑗𝛿𝜆𝑗 , 𝑐𝑗 = |𝐯∗𝑗𝐆𝐟 |2. (5.1)

Here, (𝜆𝑗 , 𝐯𝑗 ) are the eigenpairs computed by Hermitian DMD and 𝑓 =
Ψ𝐟 . For comparison, for each analytic eigenvalue, we take the mean of
the cluster of the eigenvalues 𝜆𝑗 that approximate it and then sum the
weights 𝑐𝑗 . The results are shown in Fig. 4 and Table 1 and demonstrate
the convergence in Theorem 4.6.
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