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Abstract. The first step when solving an infinite-dimensional eigenvalue problem is often to4
discretize it. We show that one must be extremely careful when discretizing nonlinear eigenvalue5
problems. Using examples from the NLEVP collection, we demonstrate that discretization can6
lead to several issues, including: (1) introduction of spurious eigenvalues, (2) omission of spectra,7
(3) severe ill-conditioning, and (4) emergence of ghost essential spectra. While many eigensolvers8
are available for solving finite matrix nonlinear eigenvalue problems, we propose InfBeyn, a solver9
for general holomorphic infinite-dimensional nonlinear eigenvalue problems that circumvents these10
discretization issues. We prove that InfBeyn is stable and converges. Furthermore, we provide an11
algorithm that computes the problem’s pseudospectra with explicit error control, enabling verification12
of computed spectra. Both algorithms and numerical examples are publicly available in the infNEP13
software package, which is written in MATLAB.14
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1. Introduction. Many nonlinear eigenvalue problems (NEPs) arise from dis-18

cretizing an infinite-dimensional problem. In fact, 25 out of the 52 NEPs from the19

NLEVP collection are derived by discretizing a continuous problem such as a dif-20

ferential eigenvalue problem [4]. The analysis typically centers on how to solve the21

resulting finite-dimensional NEP after discretization. However, as we show in this22

paper, discretizing an infinite-dimensional NEP can introduce serious problems. It23

can modify, destabilize, or destroy the desired eigenvalues, leading to the computed24

eigenvalues misrepresenting those of the underlying continuous problem - Table 1.125

presents a list of issues that we demonstrate in section 4 for six examples.26

Given a domain (a non-empty, open, and connected subset) Ω ⊂ C and a matrix-27

valued function F : Ω → Cn×n, the matrix NEP consists of finding eigenvalues λ ∈ Ω28

and nonzero eigenvectors v ∈ Cn so that F (λ)v = 0. There are many applications29

of NEPs in mechanical vibrations [65], fluid-solid interactions [96], photonic crys-30

tals [80], time-delay systems [55], resonances [9], and numerous other areas [64,69,85].31

Many of these matrix NEPs are derived from discretizing differential operators, where32

nonlinearities arise from eigenvalue-dependent boundary conditions [12], material pa-33

rameters [37]; particular basis functions [5], or truncating an infinite domain with34

transparent boundary conditions [66].35

In this paper, we propose a solver for infinite-dimensional NEPs, which is a variant36

of the contour-based algorithm called Beyn’s method [6]. Rather than first discretizing37

the NEP, our algorithm delays discretization until the last possible moment. By38

delaying discretization, we avoid modifying, destabilizing, and destroying eigenvalues39

and provably compute them accurately.40

1.1. NEPs on Hilbert spaces. We consider two separable Hilbert spaces H1

and H2 with inner products ⟨·, ·⟩Hj
and norms ∥·∥Hj

, and a scalar-dependent operator

T (λ) : D(T ) ⊇ H1 → H2.
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2 M. COLBROOK AND A. TOWNSEND

Table 1.1
Discretization issues encountered in our six examples from the NLEVP collection. Our proposed

InfBeyn algorithm avoids these issues using an infinite-dimensional approach (see subsection 2.2).

Example Observed discretization woes

acoustic wave 1d
spurious eigenvalues
slow convergence

acoustic wave 2d
spurious eigenvalues
wrong multiplicity

butterfly

spectral pollution
missed spectra

wrong pseudospectra

damped beam
slow convergence

resolved eigenfunctions with inaccurate eigenvalues

loaded string ill-conditioning from discretization

planar waveguide

collapse onto ghost essential spectrum
failure for accumulating eigenvalues

spectral pollution

For each fixed λ, T (λ) is a closed and densely-defined linear operator acting on the41

Hilbert space H1. However, we allow nonlinear dependence on the parameter λ. We42

assume that T (λ) has a fixed densely-defined domain D(T ) ⊂ H1. For a domain43

Ω ⊂ C, we assume that the map Ω ∋ λ 7→ T (λ)u ∈ H2 is holomorphic for each fixed44

u ∈ D(T ) [59, p. 375].1 We focus on NEPs that involve finding eigenvalues λ ∈ C and45

nonzero eigenfunctions u ∈ D(T ) such that46

(1.1) T (λ)u = 0.47

We call u an “eigenfunction” to distinguish it from the finite-dimensional case, even48

though H1 may not be a function space. These assumptions extend the usual as-49

sumptions for matrix NEPs [47] and allow us to develop a contour-based eigensolver50

for (1.1). Many families of NEPs satisfy these assumptions, such as boundary NEPs51

for partial differential equations, where the variable coefficients and boundary condi-52

tions depend holomorphically on the eigenvalue parameter λ [73, 84].53

The spectrum of T , denoted by Λ(T ), is the set of points λ ∈ Ω such that T (λ) :
D(T ) → H2 is not boundedly invertible. The resolvent set ρ(T ) = Ω \ Λ(T ) is
relatively open in Ω and T (z)−1 is bounded holomorphic for z ∈ ρ(T ). For any
z ∈ ρ(T ), the resolvent operator is T (z)−1 : H2 → D(T ) ⊂ H1. Because we deal with
operators acting on infinite-dimensional spaces, Λ(T ) may contain points that are not
eigenvalues. Namely, in general,{

λ ∈ Ω
∣∣ ker(T (λ)) ̸= {0}

}
⫋ Λ(T ).

This situation can be avoided under the assumption of Fredholmness. A closed linear54

operator S : D(S) ⊃ H1 → H2 is Fredholm if its range is closed and its kernel and55

cokernel have finite dimension. Its Fredholm index is dim(ker(S))−dim(coker(S)) [39,56

1While the assumption that λ 7→ T (λ)u is holomorphic for each λ uses a fixed domain D(T ), it
captures eigenvalue-dependent boundary conditions by combining the differential operator and the
boundary operator to a two-component operator defined on a fixed space [81].
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DISCRETIZATION EFFECTS FOR NONLINEAR EIGENPROBLEMS 3

p. 372]. If T (λ) is a (possibly unbounded) Fredholm operator for each λ ∈ Ω and57

Λ(T ) ̸= Ω, then Λ(T ) consists of isolated points that are eigenvalues with finite58

algebraic and geometric multiplicities, and T (λ) has Fredholm index zero for all λ ∈59

Ω [44]. Under these assumptions, many finite-dimensional NEP theorems have an60

infinite-dimensional analogue [57]. For example, a version of Keldysh’s theorem for61

infinite-dimensional NEPs (see Theorem 2.1) underpins our contour-based NEP solver.62

Since Fredholm operators remain Fredholm after small perturbations [58, Thm. 1],63

our assumptions are not brittle and allow for the design of numerical methods. The64

set of points λ ∈ Ω that are non-isolated points of Λ(T ) or for which T (λ) is not65

Fredholm is known as the essential spectrum.66

1.2. Woes of discretization. While problems caused by discretization appear67

to be common folklore, there is no systematic study of their effects on NEPs. We look68

at several examples for a lucid illustration (see section 4). There are several troubling69

problems caused by the discretization of NEPs that deserve careful attention:70

• Spurious eigenvalues. Spurious eigenvalues unrelated to the infinite-dimensional71

problem may arise due to discretization. These spurious eigenvalues can remain72

even as the discretization size increases to infinity, a phenomenon known as spectral73

pollution. This can occur even when the spectrum is purely discrete.74

• Spectral invisibility. Spectral invisibility refers to some (or all) of the eigenval-75

ues of the NEP being missed by the discretization, even as the discretization size76

increases to infinity. Regions of spectra can be “invisible” to discretizations.77

• Ill-conditioning. The infinite-dimensional NEP may have well-conditioned eigen-78

values, while the discretized problem has ill-conditioned eigenvalues. Hence, no,79

even stable, finite-dimensional solver can overcome this issue post-discretization.80

• Exceedingly slow convergence. In practice, we desire that the eigenvalues of81

the discretization rapidly converge to those of the infinite-dimensional problem.82

If one has slow convergence, it can be computationally prohibitive to compute83

eigenvalues representing the infinite-dimensional ones. Even if eigenfunctions are84

resolved accurately, the corresponding eigenvalues may be inaccurate.85

• Wrong multiplicity. Eigenvalues of the infinite-dimensional problem may be well-86

approximated using discretizations but with the wrong multiplicity.87

• Accumulating eigenvalues. The discrete spectrum can accumulate at the essen-88

tial spectrum. This can be challenging for discretizations to resolve accurately.89

• Ghost essential spectra. Many infinite-dimensional NEPs with discrete spectra90

arise from an underlying spectral problem that has essential spectra. For example,91

this is common in domain truncation for resonance computations. The eigenval-92

ues of the discretized NEP may collapse onto the ghost essential spectrum of the93

underlying problem.94

We note that while many of these issues also appear in linear spectral problems,95

nonlinearity in the spectral parameter can make these challenges more pronounced.96

1.3. Contributions. To overcome these discretization issues, we introduce an97

infinite-dimensional analog of Beyn’s method [6, 7] (see subsection 2.2). We call our98

algorithm InfBeyn (see subsection 2.2), which is based on contour integration and99

adaptively discretizes only linear equations.2 It computes eigenvalues inside a re-100

gion in the complex plane by integrating along the region’s boundary. It forms a101

2The ease of using adaptive discretizations as part of a contour method depends on the setup.
For example, with spectral methods, it is straightforward. For more complicated discretizations,
such as adaptive finite elements, one would need to carry out transformations between meshes.
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4 M. COLBROOK AND A. TOWNSEND

small generalized matrix eigenvalue problem whose eigenvalues match those of the102

infinite-dimensional NEP inside the contour. While previous approaches to infinite-103

dimensional NEPs are predominantly problem-specific, InfBeyn provides a general104

method that converges for any holomorphic NEP in regions where the spectrum is105

discrete. Moreover, we use techniques from infinite-dimensional randomized numerical106

linear algebra to prove that the method converges and is stable. Proving convergence107

and stability is a well-known problem for contour-based methods for finite-dimensional108

problems, but it is manageable in infinite dimensions.109

The term spectral exactness is commonly used to mean approximation without110

spectral pollution or invisibility [1]. A version of Beyn’s method has been developed111

for bounded Fredholm pencils in [7]. The setup of [7] uses the discrete convergence112

theory of [93] applied to domain truncation of differential operators on L2(R). The113

assumptions needed are strong and already imply spectral exactness [94]. In contrast,114

our solve-then-discretize3 approach only requires convergence of solutions of linear115

systems corresponding to the resolvent, which is a much weaker assumption. When116

studying spectral exactness, it is common to study the convergence of the resolvents117

of operators [59, Sections IV.2, VIII.1], [79, Theorems VIII.23–25], [100, Section 9.3].118

One may vary the spaces in which the operators are defined by embedding all spaces119

in a larger one and considering the “generalized” convergence of the lifted resolvents.120

Typically, it is much easier for a discretization method to converge when solving linear121

systems than to have spectral exactness. Generalized strong resolvent convergence122

does not imply the absence of spectral pollution, even if all the operators are self-123

adjoint with compact resolvent [15, Example 5]. In the self-adjoint case, generalized124

strong resolvent convergence implies the absence of spectral invisibility [10, Theo-125

rem 2.4]. However, in the non-self-adjoint case, not even norm resolvent convergence126

implies the absence of spectral invisibility [59, Example IV.3.8]. We can obtain con-127

vergence to the spectrum for contour methods by allowing the discretization sizes128

used at quadrature points to be adaptive. In other words, we convert convergence of129

the resolvent to convergence of the spectrum.130

In addition to computing eigenvalues of infinite-dimensional NEPs, we also com-131

pute pseudospectral sets to give us a more comprehensive understanding of the sta-132

bility of a system’s spectrum (see subsection 2.3). Discretizing NEPs can also cause133

issues here (see subsection 4.3), and the pseudospectral sets for a discretization may134

be misleading, even when spectral pollution and invisibility do not occur (see subsec-135

tion 2.3.1). We provide the first general algorithm that converges to the pseudospectra136

of NEPs, even when the spectrum is not discrete. Moreover, the algorithm’s output is137

guaranteed to be inside the true pseudospectral sets, thus directly verifying the com-138

putation and allowing aposterior verification of the eigenvalues computed by InfBeyn.139

1.4. Outline of paper. The paper is structured as follows: In section 2, we140

detail infinite-dimensional tools for NEPs, including Keldysh’s theorem, our InfBeyn141

algorithm, and how to compute pseudospectra. In section 3, we analyze the stability of142

InfBeyn by deriving pseudospectral set inclusions. In section 4, we cover six examples143

from the NLEVP collection derived from infinite-dimensional NEPs and illustrate144

discretization woes. We conclude and point to future developments in section 5. To145

accompany this paper, we have developed a publicly available MATLAB package,146

infNEP, available at [24], which includes all of the examples and figures of this paper.147

3The “solve-then-discretize” paradigm has recently been applied to spectral computations [23,27,
30, 54], extensions of classical methods such as the QL and QR algorithms [26, 98], Krylov methods
[38,75,95], semigroups [22], and spectral measures [21,29,99].
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2. Computational tools for infinite-dimensional NEPs. We first state148

Keldysh’s Theorem (see Theorem 2.1) before describing our infinite-dimensional ana-149

log for Beyn’s method (see subsection 2.2) and procedure for computing pseudospectra150

(see subsection 2.3). Rather than directly discretizing the NEP, we delay discretiza-151

tion until the last possible moment and only discretize linear equations.152

2.1. Keldysh’s theorem. For contour-based methods for NEPs, Keldysh’s the-153

orem is an important expansion used to reduce the NEP to a linear generalized matrix154

eigenvalue problem. Its original form goes back to Keldysh [60, 61], with numerous155

generalizations [40,68,72,92]. For a comprehensive discussion and proof of Keldysh’s156

theorem on Banach spaces, see [63, Appendix A]. We state the theorem for the general157

case of unbounded operators and provide a proof for completeness.158

Theorem 2.1. Let Ω ⊂ C be a domain and T in (1.1) be such that Ω ∋ λ 7→
T (λ)u is holomorphic for each u ∈ D(T ), T (λ) is Fredholm for all λ ∈ Ω, and
Λ(T ) ̸= Ω. Suppose the set of eigenvalues Λ(T ) = {λ1, . . . , λs} is finite and m is the
sum of their algebraic multiplicities. Then, for each λi, there exists

{vijk
∣∣ 0 ≤ k ≤ mij − 1, 1 ≤ j ≤ di} ⊂ H1, {wij

k

∣∣ 0 ≤ k ≤ mij − 1, 1 ≤ j ≤ di} ⊂ H2

that are canonical Jordan chains for T and T ∗ at λ, respectively, with normalization

k∑
α=0

mip∑
β=1

〈
d(α+β)T
dλ(α+β) (λ)v

ip
mip−β , w

iq
k−α

〉
H2

(α+ β)!
= δpqδ0k, 0 ≤ k ≤ miq − 1, 1 ≤ p, q ≤ di,

such that the resolvent of T can be decomposed as159

(2.1) T (z)−1 = V (zI − J)−1W ∗ +R(z) ∀z ∈ ρ(T ).160

Here,

Vij =
[
vij0 , v

ij
1 , . . . , v

ij
mij−1

]
, Wij =

[
wij

mij−1, w
ij
mij−2, . . . , w

ij
0

]
,

Jij is a mij ×mij Jordan block with eigenvalues λi,161

Vλi
= [Vi1, . . . , Vidi

] , Wλi
= [Wi1, . . . ,Widi

] , Jλi
= diag(Ji1, . . . , Jidi

),162

V = [Vλ1
, . . . , Vλs

] , W = [Wλ1
, . . . ,Wλs

] , J = diag(Jλ1
, . . . , Jλs

) ∈ Cm×m,163

and R(z) : H2 → H1 is a holomorphic remainder.164

Proof. Fix any point λ0 ∈ Ω and consider H′
1 = D(T ) with inner product165

⟨x, y⟩H1
+ ⟨T (λ0)x, T (λ0)y⟩H2

, which induces the graph norm. The space H′
1 is a166

Hilbert space since T (λ0) is a closed operator. We regard each T (λ) as an operator167

from H′
1 to H2. Since T (λ) is defined on the whole of H′

1, it is bounded for any168

λ ∈ Ω. The spectrum of T is unchanged when considering H′
1, T (λ) is still Fredholm169

and Ω ∋ λ 7→ T (λ)u is holomorphic for each fixed u ∈ D(T ) = H′
1.170

We apply [73, Thm. 1.6.5] to the bounded family T (λ) : H′
1 → H2 to find that

T (z)−1 = Vλi
(zI − Jλi

)−1W ∗
λi

+Rλi
(z) ∀z ∈ ρ(T ), i = 1, . . . , s,

where the remainder Rλi
: H2 → H′

1 is holomorphic on (Ω\Λ(T )) ∪ {λi}. Since the
norm of H′

1 dominates that of H1, Rλi
is holomorphic as a map into H1. Note that

R(z) := T (z)−1 −
s∑

i=1

Vλi
(zI − Jλi

)−1W ∗
λi

= T (z)−1 − V (zI − J)−1W ∗
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6 M. COLBROOK AND A. TOWNSEND

is holomorphic on Ω\Λ(T ). Moreover, for any i, R(z) = Rλi
(z) −

∑s
j ̸=i Vλj

(zI −171

Jλj
)−1W ∗

λj
is holomorphic in a neighborhood of λi. The statement of the theorem172

follows.173

The forms of V , W , and J (along with the definition of canonical Jordan chains)174

directly generalize the matrix case [47, Sec. 2.4]. The assumption of finitely many175

eigenvalues can always be met by restricting Ω to a smaller domain of interest, if176

necessary. The expansion in (2.1) shows that T (z)−1 can be expressed in terms of177

(zI − J)−1 up to a holomorphic remainder. This decomposition allows for the use of178

contour integration involving T (z)−1 to formulate an m ×m generalized eigenvalue179

problem that shares the same eigenvalues as (1.1) within Ω.180

2.2. An infinite-dimensional analogue of Beyn’s method. Beyn’s method181

is efficient for solving matrix NEPs and is particularly useful when one wants to com-182

pute eigenvalues inside a known region [6]. This contour-based method uses Keldysh’s183

expansion in (2.1) to compute a smaller linear pencil whose spectral properties match184

those of the original problem inside the region enclosed by the contour. If F (z) ∈ Cn×n185

is a matrix NEP, then it first computes the following two matrices:186

(2.2) A0 =
1

2πi

∫
Γ

F (z)−1Gdz, A1 =
1

2πi

∫
Γ

zF (z)−1Gdz,187

where Γ is a closed rectifiable Jordan curve inside Ω enclosing m eigenvalues of F (z)188

(counted via algebraic multiplicity). Here, G ∈ Cn×(m+p) is a matrix with m ≪ n189

that is often selected at random with independent standard Gaussian entries, and p190

is a small oversampling factor (e.g., p = 5) that we recommend for the robustness of191

the method. After computing A0 and A1, Beyn’s method solves an m×m generalized192

matrix eigenvalue problem related to A0 and A1.193

The usual way to apply Beyn’s method is to discretize the NEP and then use194

Beyn’s method. The dominating computational cost of Beyn’s method is solving195

linear systems. However, we prefer an infinite-dimensional analog of Beyn’s method,196

which we now describe, to overcome discretization concerns. There are three essential197

ingredients to Beyn’s method, which we generalize in turn:198

(i) Randomly generated test functions. Beyn’s method uses a random matrix199

G ∈ Cn×(m+p) whose columns are standard Gaussian test vectors. A function,200

g, drawn from a Gaussian process (GP) is an infinite-dimensional analog of a201

vector drawn from a multivariate Gaussian distribution in the sense that samples202

from g follow a multivariate Gaussian distribution [13].4 We describe the process203

for H2 = L2(X ) on a domain X ⊆ Rd and the process is analogous for other204

Hilbert spaces. We write g ∼ GP(0,K) for some continuous positive definite kernel205

K : X ×X → R if for any x1, . . . , xk ∈ X , (g(x1), . . . , g(xk)) follows a multivariate206

Gaussian distribution with mean (0, . . . , 0) and covariance Kij = K(xi, xj) for207

1 ≤ i, j ≤ k. We typically use the squared exponential covariance kernel given by208

209

(2.3) KSE(x, y) =
1

µ
√
2π

exp
(
−(x− y)2/(2µ2)

)
, µ > 0,210

where sµ = µ
√
2π is a scaling factor. The length scale parameter µ determines the211

correlation between samples of g. If µ is large, the samples g(x1), . . . , g(xk) are212

4Using functions drawn from a Gaussian process here is certainly not the only way to go. However,
this distribution of functions has become popular because of the underlying explicit probability
estimates that can be derived from the randomized SVD theory [13,49].
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Algorithm 2.1 InfBeyn: Our infinite-dimensional Beyn’s method for NEPs.

Input: Nonlinear eigenvalue problem T (z)u = 0, contour Γ enclosing m eigenvalues.

1: Draw a X × (m + p) quasimatrix whose columns are independently drawn from
the Gaussian process GP(0,KSE).

2: Compute quasimatrices A0 and A1 in (2.4) with a quadrature rule (2.7).
3: Compute the m-truncated SVD of A0 in (2.5).
4: Form and solve the m×m generalized eigenvalue problem in (2.6) for eigenvalues
λj and eigenvectors xj ∈ Cm.

Output: Eigenvalues λ1, . . . , λm in Ω and eigenfunctions uj = UΣ0xj .

highly correlated, and g is close to a constant function. If µ is small, then samples213

of g are only weakly correlated, and g is usually a highly oscillatory function. We214

use GP(0,KSE) to generate random functions in InfBeyn.215

(ii) Contour integration. InfBeyn computes the following two quasimatrices:5216

(2.4) A0 =
1

2πi

∫
Γ

T (z)−1G dz, A1 =
1

2πi

∫
Γ

zT (z)−1G dz,217

where G is a X × (m+ p) quasimatrix with each column a function independently218

drawn from GP(0,KSE).219

(iii) Solving a generalized matrix eigenvalue problems. In InfBeyn, A0 and220

A1 are quasimatrices with m + p columns. The related m × m linear pencil is221

constructed using the economized singular value decomposition (SVD) of A0 [89,222

Sec. 4], i.e.,223

(2.5) A0 = UΣ0V
∗
0 ,224

where U is a quasimatrix with m orthonormal columns in L2(X ) and V0 ∈225

C(m+p)×m is a matrix with orthonormal columns. We then solve the following226

m×m generalized eigenvalue problem:227

(2.6) U∗A1V0x = λΣ0x, x ̸= 0.228

For practical computation, InfBeyn approximates the contour integral in (2.4)229

with a quadrature rule such as a mapped trapezoidal rule. Given a quadrature rule230

with nodes z1, . . . , zℓ and weights w1, . . . , wℓ, we use the approximations231

(2.7) Ã0 =
1

2πi

ℓ∑
k=1

wkT (zk)
−1G ≈ A0, Ã1 =

1

2πi

ℓ∑
k=1

wkzkT (zk)
−1G ≈ A1.232

Since rank(Aj) = m, σm+1(Ãj) ≈ 0 for j = 0, 1. By performing an m-truncated SVD,233

we ensure that Ãj is of rankm for j = 0, 1. The approach is summarized Algorithm 2.1234

for the case of simple eigenvalues. In the general case, InfBeyn recovers an m × m235

linear pencil (2.6) with the same spectral properties as T inside Γ.236

For most of the examples in this paper, computing T (z)−1G involves solving a237

linear differential equation with m+p right-hand sides. We do this by adaptively dis-238

cretizing the differential equations and solving a linear system [76]. For an alternative239

way to perform the verification step based on computing norms in Chebfun, see [46].240

To refine the accuracy of the final computed eigenvalues while keeping computational241

5A quasimatrix is a matrix whose columns are functions instead of vectors. A X ×m quasimatrix
has m columns, and each column is a function defined on X .
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8 M. COLBROOK AND A. TOWNSEND

costs low, we first compute a rough estimate of the eigenvalues to isolate them in-242

side a small circular contour. Then, we repeat InfBeyn on each eigenvalue or a small243

cluster of eigenvalues. There are two reasons for this approach. First, we found this244

approach more computationally efficient than increasing the oversampling parameter245

p or the number of quadrature nodes ℓ. Second, the analysis in section 3 reveals that246

this is an important strategy for NEPs since the matrix VW ∗ from (2.1) may become247

ill-conditioned or rank degenerate if the contour is too large.248

Several techniques exist for estimating the number of eigenvalues m [33,62]. Con-249

sequently, we assume that m is known throughout the paper and focus on the algo-250

rithmic and theoretical aspects of our infinite-dimensional analog of Beyn’s method.251

2.3. Pseudospectra for nonlinear eigenvalue problems. Pseudospectral252

sets are a mathematical quantity that provides insight into the stability of linear and253

nonlinear systems, including eigenvalue problems [91]. Consider the set of bounded254

holomorphic perturbations of T of norm at most ϵ > 0, i.e.,255

(2.8) A(ϵ) =

{
E : Ω → B(H1,H2) holomorphic

∣∣∣ sup
z∈Ω

∥E(z)∥ < ϵ

}
,256

where B(H1,H2) denotes the space of bounded linear maps from H1 to H2. The
ϵ-pseudospectrum of T is the following union of spectra of perturbed operators:

Λϵ(T ) :=
⋃

E∈A(ϵ)

Λ(T + E).

One can show that the set Λϵ(T ) remains unchanged if we drop the condition that257

perturbations are holomorphic. It is also common to consider structured pertur-258

bations [43, 53, 74, 88, 97], which can additionally be dealt with using the infinite-259

dimensional techniques we describe in this section.260

For linear matrix eigenvalue problems, if the pseudospectra are small around an
eigenvalue, small perturbations do not perturb that eigenvalue very far. However, if
the pseudospectra are large around an eigenvalue, then a small perturbation can cause
that eigenvalue to move far away from its original position. A similar interpretation
exists for NEPs in regions where Λ(T ) is discrete. That is, for sufficiently small ϵ (so
that the spectrum remains discrete under perturbations), Λϵ(T ) can be equivalently
defined via a backward error, i.e.,

Λϵ(T ) = inf
{
z ∈ Ω

∣∣ ηT (z) < ϵ
}
,

where ηT (z) is a backward error defined in [51,87]:

ηT (z) = inf
{
ϵ
∣∣ ker(T (z) + E(z)) ̸= {0}, ∥E∥ ≤ ϵ

}
.

An alternative characterization of Λϵ(T ) also holds when the spectrum is not discrete.261

The following is a straightforward generalization of [8, Prop. 4.1] and [74, Thm. 1] to262

infinite dimensions:263

Theorem 2.2. Let ϵ > 0. With perturbations measured as in (2.8), we have

Λϵ(T ) =
{
z ∈ Ω

∣∣ ∥T (z)−1∥−1 < ϵ
}
,

where we define ∥T (z)−1∥−1 = 0 if z ∈ Λ(T ).264

Proof. Suppose that z /∈ Λ(T ) and ∥T (z)−1∥−1 < ϵ. Then, there exists a vector
v ∈ H2 of unit norm with ∥T (z)−1v∥H1

> ϵ−1. Let u = T (z)−1v ∈ H1 and define
the operator E : H1 → H2 by E = −vu∗/∥u∥2H1

. Then, ∥E∥ = 1/∥u∥H1
< ϵ and
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[T (z) + E]u = 0 so z ∈ Λϵ(T ). Hence, we find that{
z ∈ Ω

∣∣ ∥T (z)−1∥−1 < ϵ
}
⊂ Λϵ(T ).

For the reverse set inclusion, suppose for a contradiction that z ∈ Λϵ(T ) but that
∥T (z)−1∥−1 ≥ ϵ. Then z ∈ Λ(T + E), for some E ∈ A(ϵ) and hence

∥T (z)−1E(z)∥ ≤ ∥T (z)−1∥∥E(z)∥ ≤ ∥E(z)∥/ϵ < 1.

Note that T (z) + E(z) = T (z)(I + T (z)−1E(z)). Using a Neumann series, we have

(I + T (z)−1E(z))−1 =

∞∑
j=0

(−1)j [T (z)−1E(z)]j ,

which converges because ∥T (z)−1E(z)∥ < 1. Hence, since T (z) is invertible, so too265

is the product T (z)(I + T (z)−1E(z)). It follows that z /∈ Λ(T + E), which is a266

contradiction.267

Theorem 2.2 leads to a method for computing Λϵ(T ) that avoids discretization268

issues. Let {Pn} and {Qn} be sequences of increasing finite-rank orthogonal projec-269

tions on H1 and H2, respectively, such that limn→∞ P∗
nPnu = u for any u ∈ H1 and270

limn→∞ Q∗
nQnv = v for any v ∈ H2. Letting R denote the range of an operator, we271

assume that ∪n∈NR(Pn) and ∪n∈NQ(Pn) form a core of T (z) and T (z)∗, respectively,272

for any z ∈ Ω. Then, we consider the function273

(2.9) γn(z, T ) := min {σinf(T (z)P∗
n), σinf(T (z)

∗Q∗
n)} ,274

where σinf denotes the smallest singular value. The following theorem shows how these275

functions approximate ∥T (z)−1∥−1 and hence can be used to compute pseudospectra.276

The final statement is significant because it shows that in regions of discrete spectra,277

we only need to consider the functions σinf(T (z)P∗
n).278

Theorem 2.3. The functions γn satisfy

γn(z, T ) ≥ ∥T (z)−1∥−1 and lim
n→∞

γn(z, T ) = ∥T (z)−1∥−1,

where the convergence is monotonic from above and uniform on compact subsets of Ω.279

Moreover, if z ∈ ρ(T )∪ ∂Λ(T ), then the same conclusion holds with γn(z, T ) replaced280

by σinf(T (z)P∗
n).281

Proof. We first claim that282

(2.10) ∥T (z)−1∥−1 = min {σinf(T (z)), σinf(T (z)∗)} ,283

where for an unbounded operator S : D(S) ⊇ H1 → H2,

σinf(S) = inf{∥Su∥H2 |u ∈ D(S), ∥u∥H1 = 1}.

To see this, suppose first that z ̸∈ Λ(T ). Let u ∈ D(T ) with ∥u∥H1
= 1, then

1 = ∥u∥H1
= ∥T (z)−1T (z)u∥H1

≤ ∥T (z)−1∥∥T (z)u∥H2
.

Taking the infinum over u yields σinf(T (z)) ≥ ∥T (z)−1∥−1. Conversely, for any v ∈ H2

with ∥v∥H2 = 1, we have

1 = ∥v∥H2 = ∥T (z)T (z)−1v∥H2 ≥ σinf(T (z))∥T (z)−1v∥H2 .

We now choose a sequence vn with ∥T (z)−1vn∥H2 → ∥T (z)−1∥ to see that σinf(T (z)) ≤284

∥T (z)−1∥−1. Applying this result to the adjoint yields σinf(T (z)
∗) = ∥T (z)∗−1∥−1.285
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However, we have T (z)∗
−1

= (T (z)−1)∗ and hence ∥T (z)∗−1∥−1 = ∥T (z)−1∥−1.286

Now suppose that z ∈ Λ(T ) and that, for a contradiction, both of σinf(T (z)) and287

σinf(T (z)
∗) are non-zero. Let v ∈ R(T (z)) with ∥v∥H2 = 1, then the above computa-288

tion shows that 1 ≥ σinf(T (z))∥T (z)−1v∥H2 . It follows that T (z)
−1 : R(T (z)) → D(T )289

is bounded. Since R(T (z))⊥ = ker(T (z)∗) = {0}, the range of T (z) is dense in H2 and290

hence T (z)−1 extends to a bounded operator on H2. Clearly, T (z)T (z)
−1 is the iden-291

tity on H2. Closedness of T (z) shows that T (z)
−1T (z) on D(T ) and hence z /∈ Λ(T ),292

the required contradiction. The characterization in (2.10) now follows.293

Since T (z)−1 is bounded holomorphic on ρ(T ), ∥T (z)−1∥−1 is continuous on ρ(T ).294

We show that ∥T (z)−1∥−1 is continuous on the whole of Ω. Let zn ∈ ρ(T ) with295

zn → z ∈ Λ(T ). If σinf(T (z)) = 0, then for any ϵ > 0, there exists uϵ ∈ D(T ) of296

unit norm such that ∥T (z)uϵ∥H2
≤ ϵ. But ∥T (w)uϵ∥H2

is continuous in w and hence297

lim supn→∞ ∥T (zn)−1∥−1 ≤ ϵ. We can argue similarly for the adjoint in the case that298

σinf(T (z)
∗) = 0. Since ϵ > 0 was arbitrary and ∥T (z)−1∥−1 is identically zero on299

Λ(T ), it follows that ∥T (z)−1∥−1 is continuous.300

It follows immediately from (2.10) that γn(z, T ) ≥ ∥T (z)−1∥−1. Given z ∈ Ω301

and ϵ > 0, let u ∈ D(T ) of unit norm such that ∥T (z)u∥H2
≤ σinf(T (z)) + ϵ. Since302

∪n∈NR(Pn) forms a core of T (z), we may assume that u = Pnu for sufficiently large303

n. It follows that lim supn→∞ σinf(T (z)P∗
n) ≤ σinf(T (z))+ ϵ. We can argue in exactly304

the same manner for T (z)∗ and since ϵ > 0 was arbitrary, we have limn→∞ γn(z, T ) =305

∥T (z)−1∥−1. Since the sequences {Pn} and {Qn} are increasing, the functions γn(z, T )306

decrease monotonically in n. Since ∥T (z)−1∥−1 is continuous, Dini’s theorem implies307

that the convergence of γn(z, T ) is uniform on compact subsets of Ω.308

The proof of (2.10) showed that σinf(T (z)) = σinf(T (z)
∗) for z ∈ ρ(T ). Continuity309

of σinf(T (z)) and σinf(T (z)
∗) shows that this equality extends to z ∈ ∂Λ(T ). The final310

part of the theorem statement now follows.311

Combining Theorems 2.2 and 2.3, we find that for any integer n, we have312

(2.11)
{
z ∈ Ω

∣∣ γn(z, T ) < ϵ
}
⊂ Λϵ(T ).313

Moreover, since the convergence of γn(z, T ) to ∥T (z)−1∥−1 is locally uniform, these314

approximations converge to Λϵ(T ) as n → ∞ without spectral pollution or spectral315

invisibility. This convergence is made precise in terms of the so-called Attouch–Wets316

topology, which generalizes the Hausdorff metric to closed (including unbounded)317

subsets of C [3]. There are generally two ways to make this a practical computation:318

• If we have discretizations of the finite-rank operators T (z)P∗
n and T (z)∗Q∗

n that319

have finite lower bandwidths (or are well approximated by such matrices), we take320

rectangular truncations capturing the full range [30]. With respect to the appro-321

priate norms, which can differ in the domain and range space, the smallest singular322

values of the resulting matrices are the same as those of T (z)P∗
n and T (z)∗Q∗

n.323

Discretizations with finite lower bandwidths for the differential operators studied324

in this paper are provided by the ultraspherical spectral method [76].325

• If we have discretizations of PnT (z)
∗T (z)P∗

n and QnT (z)T (z)
∗Q∗

n, then we can326

compute their smallest singular values and take square roots to compute γn [28].327

The first method should be preferred over the second wherever possible since it avoids328

the loss of precision owing to the square root. In some situations, the second method329

seems unavoidable [25,31]. It can be shown that it is not always possible to compute330

Λϵ(T ) by discretizing with square, finite sections PnTP∗
n of T [20]. One must be331

careful if one wants to compute Λϵ(T ) by discretizing first.332
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Figure 2.1. The computed pseudospectra for the Orr–Sommerfeld NEP. Left: The pseudospec-
tra is computed by first discretizing with n = 64 and then computing the pseudospectra of the matrix
NEP with an appropriate weight matrix. The eigenvalues are shown as red dots and include a spu-
rious branch labeled by a blue arrow. Middle: The computed pseudospectra using the functions γn
from (2.9) for n = 64. These pseudospectral sets are guaranteed to be inside the pseudospectral sets
of the infinite-dimensional problem and converge as n → ∞. Right: The computed pseudospectra
using γn for n = 128.

2.3.1. Example: Orr–Sommerfeld. We consider the classical Orr– Sommer-333

feld equation as an example of the inclusion (2.11). When analyzing the temporal334

stability of fluid flows, this equation is a linear eigenvalue problem [77,78]. However,335

if one considers spatial stability analysis, it becomes an NEP [82, Chapt. 7].336

We consider a background plane Poiseuille flow U(y) = 1− y2 between two walls337

at y = ±1 with Reynolds number R > 0 and a fixed real perturbation frequency338

ω ∈ R. To define a NEP, we need the following two operators:339

A(λ)ϕ =

[
1

R
B(λ)2 + i (λU(y)− ω)B(λ) + iλU ′′(y)

]
ϕ, B(λ)ϕ = −d2ϕ

dy2
+ λ2ϕ.340

The Orr–Sommerfeld operator is formally defined by T (λ) = B(λ)−1A(λ). Care is341

needed when defining the boundary conditions, domains, and appropriate spaces.342

Moreover, the spectral properties of the NEP depend on a choice of norms [90]. We343

equip B(λ) with Dirichlet boundary conditions ψ(±1) = 0 and T (λ) with boundary344

conditions ψ(±1) = 0 and ψ′(±1) = 0. The appropriate Hilbert space is D(B(1)) with345

the energy inner-product given by [34]346

(2.12) ⟨ϕ, ψ⟩E =

∫ 1

−1

[B(1)ϕ]ψ dy =

∫ 1

−1

ϕψ +
dϕ

dy

dψ

dy
dy.347

We consider ω = 0.264002 andR = 5772.22, corresponding to the critical neutral point348

for stability. In this case, Λ(T ) is discrete and ∂Λ(T ) = Λ(T ). Hence, Theorem 2.3349

tells us that the adjoint T (λ)∗ is not needed to compute Λϵ(T ). Other examples,350

such as Blasius boundary layer flow, have a continuous spectral component [45], and351

pseudospectra can also be computed using the functions γn for such problems.352

This example goes under the name of orr sommerfeld in the NLEVP collection,353

where it is discretized using a Chebyshev collocation method [88]. We compute the354

pseudospectra of these discretizations with appropriate weight matrices to take into355

account the norm induced by (2.12). For this problem, the pseudospectra of the356

discretized operators converge to the correct pseudospectra as the discretization size357

increases. However, deciding which regions of the computed pseudospectra are trust-358

worthy can be challenging. We also compute the pseudospectra using the functions γn359

in (2.9) with a Legendre Galerkin spectral method and basis recombination to enforce360

the boundary conditions. For this basis, AP∗
n and BP∗

n are lower banded so we use361

rectangular truncation to compute γn(z, T ) and apply Theorem 2.3.362
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Figure 2.1 (left) shows pseudospectra of the discretized operators using n = 64363

(NLEVP collection default) and Figure 2.1 (middle) shows γn for n = 64. There364

is a region where both pseudospectra agree. However, as Im(λ) increases, so do365

the differences between the pseudospectral sets. Due to (2.11), we can trust the366

output provided by γn and use it to discern which spectral regions of the Chebyshev367

collocation method have converged. Figure 2.1 (right) shows pseudospectra computed368

using γn for n = 128. This confirms our suspicions that there is a branch of spurious369

eigenvalues in the discretized NEP when n = 64. In subsection 4.3, we will see a370

striking example where pseudospectra of the discretized operators do not converge.371

3. Stability and convergence analysis of infBeyn. We now obtain pseu-372

dospectral set inclusions for InfBeyn (see Algorithm 2.1) using Keldysh’s theorem.373

InfBeyn computes the eigenvalues of the NEP inside the contour Γ via the pencil374

(3.1) C̃(z) = Ũ∗(Ã1 − zÃ0)Ṽ0,375

where Ã0 = ŨΣ̃0Ṽ
∗
0 is the SVD of Ã0. Here, Ã0 and Ã1 are the approximations of376

A0 and A1, respectively, computed by InfBeyn via a quadrature rule and truncated377

singular value decomposition (see (2.7)).378

We proceed in two steps. First, we relate C̃ to the following pencil:379

(3.2) C(z) = (A1 − zA0)V0,380

which amounts to understanding the errors incurred by quadrature rules (see subsec-381

tion 3.2). In (3.2), V0 denotes the right singular vector matrix of A0. The range of382

C(z) lies in H1, whereas its domain is Cm. Second, we relate C to T , which is about383

controlling the error of InfBeyn when performed with exact integration (see subsec-384

tion 3.3). Similar pseudospectral set inclusions are known for the FEAST method for385

linear eigenvalue problems [54]; however, the analysis is more challenging for NEPs.386

3.1. Setup. Suppose that Γ is a contour that does not intersect Λ(T ) and bounds
a simply-connected region int(Γ) containing eigenvalues λ1, . . . , λs with total algebraic
multiplicity m. If f is a holomorphic function on a neighborhood of int(Γ), then by
the Cauchy integral formula, we have

1

2πi

∫
Γ

f(z)T (z)−1 dz = V f(J)W ∗,

where J is a block Jordan matrix and V are W are the generalized right and left387

eigenvectors of T in Theorem 2.1. We assume that the quadrature rule used by388

InfBeyn is accurate in the sense that our approximations Ãj to Aj satisfy389

(3.3) ∥Aj − Ãj∥ ≤ ϵ, j = 1, 2,390

where ϵ > 0. Recall that A0, A1, Ã0 and Ã1 are of rank m (see subsection 2.2).391

Throughout the analysis, we also assume that VW ∗GV0 is of rank m.392

3.2. Controlling the errors incurred by quadrature rules. We begin by
controlling how the errors in InfBeyn’s quadrature rules perturb the spectral proper-
ties of its linear pencils, i.e., controlling the difference between C̃ (see (3.1)) and C
(see (3.2)). These pencils map to different spaces, so we bound the difference between
σinf(C) and σinf(C̃), which directly bounds the differences in pseudospectra. Since Ũ
and Ṽ0 have orthonormal columns and C̃(z) is of rank at most m,

σinf(C̃(z)) = σm(C̃(z)) = σm

(
Ũ(Ũ∗Ã1Ṽ0 − zŨ∗Ã0Ṽ0)Ṽ

∗
0

)
= σm(Ũ Ũ∗Ã1Ṽ0Ṽ

∗
0 −zÃ0).
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The last equality uses that Ũ Ũ∗ and Ṽ0Ṽ0
∗
act as the identity on the column and row

spaces of Ã0, respectively. Similarly, σinf(C(z)) = σm(UU∗A1V0V
∗
0 − zA0). Hence,∣∣∣σinf(C̃(z))− σinf(C(z))

∣∣∣ ≤ ∥P1A1P2 − P̃1Ã1P̃2∥+ |z|∥A0 − Ã0∥,

where P1 = UU∗, P̃1 = Ũ Ũ∗, P2 = V0V
∗
0 , and P̃2 = Ṽ0Ṽ

∗
0 . By the triangle inequality,

∥P1A1P2 − P̃1Ã1P̃2∥ ≤ ∥A1∥(∥P1 − P̃1∥+ ∥P2 − P̃2∥) + ∥A1 − Ã1∥.

Since A0 and Ã0 have the same rank, we know that [19]:

∥P1 − P̃1∥+ ∥P2 − P̃2∥ ≤ 2min{∥A†
0∥, ∥Ã

†
0∥}∥A0 − Ã0∥ ≤ 2∥A†

0∥∥A0 − Ã0∥,

where A†
0 denotes the pseudoinverse of A0. From (3.3), we conclude that393

(3.4)
∣∣∣σinf(C̃(z))− σinf(C(z))

∣∣∣ ≤ (2∥A†
0∥∥A1∥+ |z|+ 1)ϵ.394

One can interpret (3.4) as telling us that the pseudospectral sets of C(z) and C̃(z) are395

close. Precisely how close is determined by the errors incurred when computing A0396

and A1 with a quadrature rule, i.e., ∥A0− Ã0∥ and ∥A1− Ã1∥, as well as the quantity397

∥A†
0∥∥A1∥ that is related to the intrinsic spectral properties of T (see (3.8)).398

3.3. Stability analysis with exact integration. We now relate the pseu-399

dospectral sets of C and T . Combined with (3.4), the following bounds will allow400

us to prove pseudospectral set inclusions between C̃ (the pencil used to compute401

eigenvalues in InfBeyn) and T (the original NEP) inside Γ.402

Theorem 3.1. Assume the same conditions for T as in subsection 2.1 and the403

setup in subsection 3.1. For sufficiently small δ > 0, the following pseudospectral set404

inclusions hold inside Γ:405

(3.5) Λδ1(T ) ∩ int(Γ) ⊂ Λδ(C) ∩ int(Γ) ⊂ Λδ2(T ) ∩ int(Γ),406

where

δ1 =
δ

∥VW ∗∥∥VW ∗G∥+Mδ
, δ2 =

δ

σm(VW ∗)σm(VW ∗G)−Mδ
.

Here, V and W are the matrices of generalized eigenvectors, G is the random quasi-407

matrix in subsection 2.2 and M = supz∈int(Γ) ∥R(z)∥.408

Proof. We first prove the right side of the inclusion. Let z ∈ int(Γ) such that409

σinf(C(z)) < δ and define L1 = (VW ∗)†. If z ∈ Λ(T ), then (3.5) immediately holds,410

and there is nothing to prove. If T (z)−1 exists, Keldysh’s theorem implies that411

T (z)−1L1C(z) = [V (zI − J)−1W ∗ +R(z)](VW ∗)†V (J − zI)W ∗GV0
= −VW ∗GV0 +R(z)L1C(z),

(3.6)412

where we have used C(z) = V (J − zI)W ∗GV0. Since σinf(C(z)) < δ, there exists a
unit-norm x ∈ Cm with ∥C(z)x∥ < δ. Furthermore, u = L1C(z)x ̸= 0; otherwise,
VW ∗GV0x = 0 and VW ∗GV0 would not be of rank m. We also have that

∥u∥ ≤ ∥L1∥∥C(z)x∥ < δ/σm(VW ∗).

This means that∥∥∥∥T (z)−1 u

∥u∥

∥∥∥∥ ≥ ∥VW ∗GV0x∥
∥u∥

−M >
σm(VW ∗)σm(VW ∗G)

δ
−M,
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where M = supz∈int(Γ) ∥R(z)∥. It follows that if δ is sufficiently small so that Mδ <413

σm(VW ∗)σm(VW ∗G), then z ∈ Λδ2(T ). Hence, Λδ(C) ∩ int(Γ) ⊂ Λδ2(T ) ∩ int(Γ).414

For the other inclusion, let z ∈ int(Γ) with ∥T (z)−1∥ > 1/δ1, where δ1 =
δ/(∥VW ∗∥∥VW ∗G∥+Mδ), and define L2 = (VW ∗GV0)†. If σinf(C(z)) = 0, there is
nothing to prove. Hence, assume that σinf(C(z)) > 0, so that T (z)−1 exists and

C(z)L2[T (z)
−1 −R(z)] = V (J − zI)W ∗GV0(W ∗GV0)†V †V (z − J)−1W ∗ = −VW ∗.

There exists u of unit norm such that ∥T (z)−1u∥ > 1/δ1. Provided that δ1 is suffi-
ciently small so that δ1 < 1/M , we know that

∥T (z)−1u−R(z)u∥ > 1/δ1 −M > 0.

Since
(
T (z)−1 −R(z)

)
u = V (z − J)−1W ∗u lies in the range of V , it follows that

x = L2

(
T (z)−1 −R(z)

)
u satisfies the following inequality:

∥x∥ ≥ σm(L2)∥
(
T (z)−1 −R(z)

)
u∥ > 1/δ1 −M

∥VW ∗GV0∥
=

1/δ1 −M

∥VW ∗G∥
.

This means we have∥∥∥∥C(z) x

∥x∥

∥∥∥∥ =
∥VW ∗u∥

∥x∥
<

∥VW ∗G∥
1/δ1 −M

∥VW ∗u∥ ≤ ∥VW ∗G∥∥VW ∗∥
1/δ1 −M

= δ.

Hence, we conclude that Λδ1(T ) ∩ int(Γ) ⊂ Λδ(C) ∩ int(Γ), finishing the proof.415

Theorem 3.1 tells us that when InfBeyn is performed with exact integration, the416

constructed pencil is very reasonable for computing the eigenvalues of T provided417

that VW ∗ and VW ∗G are well-conditioned, and M is not too large.418

3.4. Pseudospectral set inclusions and interpretation. Combining (3.4)419

and Theorem 3.1, we conclude that420

(3.7) Λδ−(T ) ∩ int(Γ) ⊂ Λδ(C̃) ∩ int(Γ) ⊂ Λδ+(T ) ∩ int(Γ),421

where γ± = δ ± (2∥A†
0∥∥A1∥+ 1 + supz∈int(Γ) |z|)ϵ and

δ− =
γ−

∥VW ∗∥∥VW ∗G∥+Mγ−
, δ+ =

γ+
σm(VW ∗)σm(VW ∗G)−Mγ+

.

Since InfBeyn uses the pencil C̃ to compute the eigenvalues of T inside Ω, (3.7) tells422

us that InfBeyn robustly computes the eigenvalues of T provided that the following423

conditions hold: (1) VW ∗ is well-conditioned, (2) VW ∗G is well-conditioned,6 (3)424

the holomorphic remainder is not too large inside int(Γ), i.e., M is not too big, (4)425

∥A†
0∥∥A1∥ is relatively small, and (5) ϵ is small.426

The NEP intrinsically determines condition (1). Once condition (1) holds, con-427

dition (2) follows in practice, provided that the sketching performed by InfBeyn is428

adequate at capturing the range of A0 and A1. Condition (3) measures the regularity429

of T inside Ω, while (4) is about the regularity of the pencil C if no quadrature error430

6It can be shown that for p = 5 we have σm(VW ∗G) ≥ 50σm(VW ∗)Trace((W ∗KW )−1)
with probability > 99.999% (see [14, Lem. 3] with t = 10). Here, K is the covariance kernel
in GP(0,K) used to randomly generate the columns of G. Moreover, for p = 5, ∥VW ∗G∥ ≤
9(m+5)∥VW ∗∥Trace(K) with probability > 99.999% (see [14, Lem. 4] with s = 3), where Trace(K)
is the sum of the eigenvalues of K. In practice, VW ∗G is well-conditioned when p ≥ 5, VW ∗ is
well-conditioned, and the covariance kernel in GP(0,K) is reasonably selected.
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Figure 4.1. Computed eigenvalues for the discretized acoustic wave 1D example labeled as
acoustic wave 1d in the NLEVP collection with discretization size n = 10 (blue), n = 100 (red),
and n = 500 (yellow). Left: The spectrum of the infinite-dimensional problem is empty, and all the
computed eigenvalues are spurious. Right: The computed eigenvalues are correctly converging as
n → ∞ to the spectra of the infinite-dimensional problem (black dots), but the convergence is slow.

is incurred. By Keldysh’s expansion, we see that431

(3.8) ∥A†
0∥∥A1∥ ≤ σm(VW ∗G)∥V JW ∗G∥ ≤ σm(VW ∗G)∥V JW ∗∥∥G∥.432

Again, one expects that (4) holds, provided that the sketching performed by InfBeyn433

is adequate. Finally, (5) suggests that InfBeyn’s quadrature rules should be relatively434

accurate. In short, (3.7) tells us that InfBeyn is a robust method for computing the435

eigenvalues of an NEP inside a compact region of the complex plane.436

4. Six NEPs with unsettling discretization issues. It turns out that 25437

of the 52 matrix NEPs from the NLEVP collection are derived by discretizing an438

infinite-dimensional NEP. To showcase the unsettling discretization effects, we take439

six examples from the NLEVP collection and show how discretization has modified,440

destabilized, and destroyed spectra. To ensure we report problems caused by dis-441

cretization alone, we have verified the computed eigenvalues of the discretized NEPs442

with extended precision. The eigenvalues computed using InfBeyn are verified by443

computing infinite-dimensional residuals, similar in spirit to subsection 2.3.444

4.1. Example 1: One-dimensional acoustic wave. This is a differential445

boundary eigenvalue problem posed on L2([0, 1]) that takes the form446

(4.1)
d2p

dx2
+ 4π2λ2p = 0, p(0) = 0, χp′(1) + 2πiλp(1) = 0.447

Here, p is the acoustic pressure, λ is the frequency, and χ is the (possibly complex)448

impedance [18]. The eigenvalues correspond to the resonant frequencies of the system449

and can be calculated explicitly (for values of χ for which tan−1(iχ) is finite) as:450

(4.2) λk = tan−1(iχ)/(2π) + k/2, k ∈ Z.451

This problem goes under the name of acoustic wave 1d and is the first problem listed452

in the NLEVP collection. It is commonly discretized using finite element method453

(FEMs) [50] to form a quadratic matrix NEP.454

We first consider the default value χ = 1, which is also a value of χ that makes455
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Figure 4.2. The minimum absolute value of the spurious eigenvalues as a function of n. Left:
The acoustic wave 1D example. Right: The acoustic wave 2D example, where the true discretization
size is n = n0(n0 − 1).

tan−1(iχ) in (4.2) infinite.7 We compute the eigenvalues of the discretized problem456

for three discretization sizes n = 10, 100, and 500 (see Figure 4.1 (left)). We compute457

these eigenvalues using the polyeig command in MATLAB. One can easily show that458

the spectrum of (4.1) is empty for χ = 1. Hence, all these computed eigenvalues are459

spurious and can be regarded as meaningless for the original problem in (4.1). Fig-460

ure 4.2 (left) shows the minimum absolute value of the eigenvalues as a function of n.461

The eigenvalues march off to infinity, but incredibly slowly.462

We repeat the experiment with the value χ = 1.0001 so that (4.1) no longer has463

an empty spectrum. Again, we discretize (4.1) using FEMs [50] with n = 10, 100, and464

500 and compute the eigenvalues of the matrix NEP using polyeig. The computed ei-465

genvalues are now converging as n→ ∞; however, the rate is very slow (see Figure 4.1466

(right)). This example shows that even when the eigenvalues of the discretization are467

converging, it can be computationally prohibitive if the rate is slow. Moreover, it468

is easy to be misled, even when comparing different discretization sizes [16]. Hence,469

methods that verify computations (e.g., using the infinite-dimensional pseudospectra470

techniques of subsection 2.3 to verify the output of InfBeyn) are very useful.471

4.2. Example 2: Two-dimensional acoustic wave. In the NLEVP collec-472

tion, a 2D acoustic wave example goes under the name of acoustic wave 2d and is473

discretized using FEMs. The NEP is posed on L2([0, 1]2) and given by474

(4.3)

∂2p

∂x2
+
∂2p

∂y2
+ 4π2λ2p = 0

p(0, y) = p(x, 0) = p(x, 1) = 0, χ
∂p

∂x
(1, y) + 2πiλp(1, y) = 0,

475

with the same meaning of the parameters as in (4.1).476

We first select χ = 1. For this value of χ, the spectrum of (4.3) is non-empty,477

unlike the 1D case. However, (4.3) has no eigenvalues in the region [−10, 10]× [0.6, 4]478

in the complex plane, which can be proved using an argument principle. Despite this,479

the matrix NEPs for n = 56, 240, and 506 have spurious eigenvalues in that region480

7More precisely, we consider the operator T (λ) : H2(0, 1) → L2(0, 1) × C2 given by T (λ)p =
(−p′′ − (2πλ/c)2p, p(0), χp′(1) + 2πiλp(1)). The operator λ2T (1/λ) has essential spectra at λ = 0.
Hence, this problem has essential spectra (not eigenvalues) at infinity for any χ.
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Figure 4.3. The spectra of the acoustic wave 2D example for χ = 1. Left: Eigenvalues
of the discretized problem, acoustic wave 2d, for discretization sizes n = 56, 240, and 506. The
discretization sizes are constrained to be of the form n = n0(n0 − 1). There are no eigenvalues
of (4.3) in this region. Right: A region in the complex plane close to the real axis that does contain
eigenvalues of (4.3). These are shown as black dots and are computed using InfBeyn, where we
separate the problem into a family of one-dimensional problems. The yellow dots are eigenvalues of
the discrete problem for n = 506, showing convergence to a proportion of them. We only show a
region in the right-half plane because the spectrum of the infinite-dimensional NEP and eigenvalues
of the discretization are symmetric about the imaginary axis.

caused by the discretization (see Figure 4.3 (left)). Figure 4.2 (right) shows how severe481

this is. The spurious eigenvalues only exit the disc of radius 10 after a discretization482

size in excess of 106. There is a region close to the real axis in the complex plane483

for which the discretizations do correctly approximate the spectra (see Figure 4.3484

(right)). Determining which regions the discretization will have spurious eigenvalues485

and which regions the computed eigenvalues can be trusted seems challenging. To486

give an idea of how hard this is, the location of spectral pollution for linear eigenvalue487

problems has only very recently been characterized in any sense of generality [11].488

In contrast, InfBeyn correctly returns no eigenvalues in the region [−10, 10]× [0.6, 4]489

in the complex plane and accurately computes the eigenvalues close to the real axis.490

In summary, the discretizations exhibit spurious eigenvalues in one region and slow491

convergence in another. This example is a cause for concern because the two regions492

are relatively close together in the complex plane, making it challenging to identify493

spectral pollution after discretization.494

When χ ̸∈ (−∞,−1] ∪ [1,∞), a subset of the spectrum is given by an infinite
number of simple eigenvalues that obey the following asymptotic formula:

λk ∼ sign

[
Re

(
i

√
1

χ2 − 1

)]
k/(2

√
1− 1/χ2), k → ∞,

where the sign function is required to take care of branch cuts. We now take χ = 0.8,495

and for this value of χ, the eigenvalues of (4.3) that obey the above asymptotic formula496

are purely imaginary. Figure 4.4 shows the approximation of these eigenvalues using497

the discrete problem with different discretization sizes. Again, the eigenvalues of the498

infinite-dimensional problem are shown as black circles and computed using InfBeyn.499

The eigenvalues of the discrete problem are symmetric across the imaginary axis. As500

the kth pair approaches the imaginary axis, they collide, and the pair splits. One501

eigenvalue converges to λk, while the other shoots off to infinity. In other words, the502

discrete problem overestimates the actual multiplicity.503
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Figure 4.4. As the discretization size increases, we observe the eigenvalues of the discretization
(green dots) collide onto the imaginary axis, and a few converge to the eigenvalues of the infinite-
dimensional problem (black dots). The eigenvalues of the discretization are potentially misleading
because the eigenvalues of the infinite-dimensional problem are simple. Still, it appears that two
eigenvalues of the discretization are converging to each eigenvalue.

Re(λ)

Im
(λ
)

Re(λ)

Im
(λ
)

Figure 4.5. The computed pseudospectra of the butterfly NEP. Left: The pseudospectra of the
discretized pencil using matrices of size n = 500. The eigenvalues are shown as red dots and converge
to the union of four arcs as n → ∞. Right: The pseudospectra computed using the functions γn
from (2.9) and an adaptive truncation size. These pseudospectra are guaranteed to be inside the
pseudospectra of the infinite-dimensional problem and converge as n → ∞.

4.3. Example 3: Butterfly. As our next example, we further show the impor-504

tance of verification of approximated pseudospectra in (2.11) and that our techniques505

are not limited to differential operators. We consider the NEP called butterfly from506

the NLEVP collection, which is a rational NEP constructed from truncations of bi-507

lateral shift operators on ℓ2(Z) [71]. The pencil depends on a vector c ∈ C10 which508

we take as c = [0.2i, 0, 1.3, 0, 0.1, 0, 1, 0, 0, 0].509

Figure 4.5 (left) shows the eigenvalues and pseudospectra of the discretized prob-510

lem using matrix sizes n = 500. The eigenvalues appear to converge to four arcs in511

the complex plane as n→ ∞. In the right of Figure 4.5, we show pseudospectra com-512

puted using the functions γn from (2.9). The operators are infinite banded matrices513

acting on l2(Z); hence, it is straightforward to compute γn directly using rectangular514

truncations. We use a λ-adaptive truncation size to ensure convergence of the plot.515

The plots show that the discretized operator suffers from spectral pollution, invisi-516

bility, and destabilization. For this particular example, changing the discretization517

to circulant matrices approximating the shift is better. However, in general, such a518

procedure is not guaranteed to circumvent the issues caused by discretization.519

This manuscript is for review purposes only.



DISCRETIZATION EFFECTS FOR NONLINEAR EIGENPROBLEMS 19

-15 -10 -5 0

-1

-0.5

0

0.5

1
10

6

Re(λ)

Im
(λ
)

-7.5 -7.48 -7.46 -7.44 -7.42 -7.4

-5

0

5
10

4

Re(λ)

Im
(λ
)

Figure 4.6. Computed eigenvalues of discretization (red dots) compared to the eigenvalues
computed from InfBeyn (black dots). Left: Eigenvalues in the region [−15, 0] × [−106, 106]. Right:
A magnified picture of the eigenvalues in the region [−7.5,−7.4]×[−5×104, 5×104]. The eigenvalues
of the discretized NEP show significant errors.

4.4. Example 4: Damped beam. We now consider the NEP that goes by the520

name damped beam in the NLEVP collection. It is given by521

(4.4)
d4v

dx4
(x)−α0λ

2v(x) = βλv(x)δ(x−1/2), v(0) =
d2v

dx2
(0) = v(1) =

d2v

dx2
(1) = 0,522

where α0, β < 0 are fixed physical constants and v represents the transverse dis-
placement of the beam. We take the default NLEVP parameter values of α0 =
−0.018486857142857 and β = −0.137142857142857. The delta function δ(·) in (4.4)
is interpreted as continuity of v, v′, and v′′ at x = 1/2, but with a jump in v′′′, i.e.,

lim
ϵ↓0

[
d3v

dx3
(1/2 + ϵ)− d3v

dx3
(1/2− ϵ)

]
= βλv(1/2).

The NEP is a quadratic eigenvalue problem that arises in the vibration analysis of a523

beam supported at both ends and damped in the middle [52].524

We discretize (4.4) using a finite element method with cubic Hermite polynomials
as the interpolation shape functions [32]. There are two groups of eigenvalues for (4.4).
The first group is purely imaginary and given by the following formula:

λ
(1,±)
k = ±4π2k2i/

√
−α0, k ≥ 0,

with corresponding eigenfunctions that vanish at x = 1/2. The second group has the525

following asymptotic formula:526

(4.5) λ
(2,±)
k =

4
√
α0

[
±
(
kπ − π

2

)
i+

β

8kπ
√
−α0

]2
+O

(
1

k

)
, k → ∞.527

Asymptotic formulas benefit contour-based methods as they inform us where to center528

contours. In addition, if the asymptotic formula comes with an explicit error estimate,529

we can choose the contour size. The asymptotic formula in (4.5) allows us to compute530

λ
(2,±)
k for large k using InfBeyn with a circular contour of radius 1 centered at (4.5).531

An alternative to asymptotics is localization theorems for NEPs [8], which are also532

very useful for contour methods.533

Figure 4.6 shows the eigenvalues of the discretized problem for the discretization534

size n = 100 and the eigenvalues computed using InfBeyn. Comparing InfBeyn’s535
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Figure 4.7. The real (top row) and imaginary (bottom row) of the eigenfunctions corresponding

to λ
(1,+)
10 (left) and λ

(2,+)
10 (right). Surprisingly, the eigenfunctions are well-resolved by the discrete

NEP while the corresponding eigenvalues λ
(1,+)
10 and λ

(2,+)
10 are not.

-10 -8 -6 -4 -2 0

-1

-0.5

0

0.5

1
10

6

Re(λ)

Im
(λ
)

α(x) = α0(1 + x2)

-20 -15 -10 -5 0

-1

-0.5

0

0.5

1
10

6

Re(λ)

Im
(λ
)

α(x) = α0x

-8 -6 -4 -2 0

-1

-0.5

0

0.5

1
10

6

Re(λ)

Im
(λ
)

α(x) = α0(1 + cos(10πx)2)

Figure 4.8. Same as Figure 4.6 but with the displayed variable coefficient α(x) replacing α0

in (4.4).

approximation of λ
(2,+)
k for 1 ≤ k ≤ 100 and the first four terms of the asymptotics536

shows that InfBeyn has computed all of the eigenvalues in Figure 4.7 to relative error537

smaller than 10−12. The discretization does a good job of approximating the real538

part of the first group of eigenvalues {λ(1,±)
k }, but only a handful of the eigenvalues539

are accurate due to errors in the imaginary part. Surprisingly, we observe that the540

corresponding eigenfunctions are well-resolved by the discretization. For example,541

Figure 4.7 shows the approximation of the eigenfunctions corresponding to λ
(1,+)
10 and542

λ
(2,+)
10 . The L2([0, 1]) subspace angle between the approximate eigenfunction and the543

true eigenfunction (computed using InfBeyn) are approximately 10−3. However, the544

error in the approximation of λ
(1,+)
10 and λ

(2,+)
10 , are 48.1040 and 35.5109, respectively.545

Therefore, resolving the eigenfunctions is insufficient for accurately computing the546

corresponding eigenvalues. We find this extremely unsettling. Figure 4.8 shows the547

computed eigenvalues when we replace α0 (4.4) by a variable coefficient α(x).8 The548

regions in the complex plane where the computed eigenvalues are reliable depend549

non-trivially on the coefficient.550

8For NEPs consisting of coupled PDEs with constant coefficients, we can sometimes solve for the
eigenvalue-dependent solution on each domain and reduce the problem to a finite-dimensional NEP
relating the boundary values [2]. This can be done for (4.4) when all the coefficients are constant
but cannot generally be done for variable coefficients.
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Figure 4.9. A comparison of four discretization methods and InfBeyn for (4.6). Left: InfBeyn
is stable. In contrast, a discretization method can construct an NEP with severely ill-conditioned
eigenvalues. Right: The relative accuracy of the computed eigenvalues.

4.5. Example 5: A loaded string. Next, we look at another NEP in the551

NLEVP collection named loaded string. The NEP is given by552

(4.6) −d2u

dx2
= λu, u(0) = 0,

du

dx
(1) +

λκM

λ− κ
u(1) = 0.553

It models the vibrations of a string with a mass load M attached to an elastic spring554

with stiffness κ [84]. We use the default parameters M = κ = 1. The eigenvalues of555

physical interest lie in the interval (κ,∞) ⊂ R and are solutions of556

(4.7) cos
(√

λ
)
+

√
λκM

λ− κ
sin

(√
λ
)
= 0.557

Since the infinite-dimensional NEP has a Rayleigh quotient that increases mono-558

tonically with the spectral parameter, one can show that a linear FEM constructs a559

discrete NEP whose eigenvalues converge to the spectrum of (4.6) without spectral560

pollution or missing eigenvalues [83]. However, discretization can still introduce se-561

vere ill-conditioning, potentially (but not necessarily) causing inaccurate computed562

eigenvalues in floating-point arithmetic.563

We consider four methods of discretization and compare them with InfBeyn.564

The first discretization uses finite elements as proposed in [84], the second uses a565

Chebyshev collocation method [35], the third uses a standard Galerkin method using566

Legendre polynomials, and the fourth uses the ultraspherical spectral method [76]. To567

calculate the accuracy of each discretization method, we compute solutions to (4.7)568

using Newton’s method with initial guesses provided by the asymptotic formula λk ∼569

(k − 1/2)2π2 as k → ∞. This asymptotic formula also guides us in selecting the570

centers of the contours for InfBeyn.571

Figure 4.9 (left) shows the relative condition numbers of the first 100 eigenvalues572

of the resulting discrete NEPs (see [47, Thm. 2.20] for the condition number formula)573

for 500 × 500 discretizations. We also show the corresponding condition numbers574

for InfBeyn. We see the stability of InfBeyn, as predicted by our analysis in sec-575

tion 3. While the condition numbers are interesting, they give little insight into the576

final accuracy of the computed eigenvalues (see Figure 4.9 (right)), which may be577

because floating-point rounding errors are causing highly structured perturbations.578
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Figure 4.10. Spectra of the planar waveguide problem in the λ plane. Left: The eigenvalues of
the discretized planar waveguide problem are shown in red. The eigenvalues computed by InfBeyn
are shown as black circles and verified using infinite-dimensional residuals. Right: A magnified
region near λ = 0. The discretized problem has spurious modes, and several branches of the modes
collapse onto the essential spectrum of the underlying problem posed on R (shown in light blue).

Moreover, the relative accuracy of the computed eigenvalues is also due to how fast579

the eigenvalues of the discretization converge.580

4.6. Example 6: Planar waveguide. For our final example, we consider the581

NEP called planar waveguide in the NLEVP collection. This NEP describes the582

propagation properties of electromagnetic waves in multilayered media, characterized583

by a refractive index η that varies in x-direction [86]. The original problem is a linear584

problem on the unbounded domain R that has both discrete and essential spectra [67].585

More precisely, consider a material that consists of J + 1 layers described by586

refractive indices η0, . . . , ηJ and the positions of the interfaces x1 = 0 < x2 < · · · <587

xJ = L, so that η(x) = η0 if x < x1, η(x) = ηj if xj < x < xj+1 and η(x) = ηJ588

if x > xJ . The truncated domain is [x1, xJ ] = [0, L]. For a frequency k, we define589

δ± = k2(η20 ± η2J)/2. The NEP is given by590

(4.8)

d2ϕ

dx2
(x) + k2[η2(x)− µ(λ)]ϕ(x) = 0, µ(λ) =

δ+
k2

+
δ−

8k2λ2
+
λ2

k2
,

dϕ

dx
(0) +

(
δ−
2λ

− λ

)
ϕ(0) = 0,

dϕ

dx
(L) +

(
δ−
2λ

+ λ

)
ϕ(L) = 0.

591

We take the default parameters J = 5, η0 = 1.5, η1 = 1.66, η2 = 1.6, η3 = 1.53, η4 =592

1.66, η5 = 1.0, x2 = 0.5, x3 = 1.0, x4 = 1.5, x5 = 2.0 and k = 2π/0.6328.593

We discretize (4.8) using piecewise linear finite elements. Figure 4.10 shows594

the eigenvalues computed using finite elements and a discretization size of n = 129595

(NLEVP’s default value) and those computed using InfBeyn. We also show the es-596

sential spectrum of the linear problem on the unbounded domain, which is given by597

λ such that µ(λ) ∈ (−∞,max{η20 , η2J}].9 The majority of the eigenvalues of the dis-598

cretized NEP are inaccurate, and there are also spurious guided modes. Many modes599

have collapsed onto the essential spectrum of the linear eigenvalue problem posed on600

R. This issue is common with discretized problems of this type [41, Fig. 3], and we601

9To see this, one considers the altered linear problem on R with η1 = · · · = ηJ , where the essential
spectrum is µ(λ) ∈ (−∞,max{η20 , η2J}]. One then shows that the resolvents of the altered problem
differ from the original by a compact operator [59, p. 244].
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Figure 4.11. Same as Figure 4.10 but in the µ(λ) plane. The essential spectrum of the
underlying problem posed on R is the semi-infinite interval µ ∈ (−∞,max{η20 , η2J}].
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have normalized by
√

|µ(λ)| to capture the different rational scalings of λ in the NEP.

call it ghost essential spectra. In contrast, λ = 0 is the only point in the essential602

spectrum of the NEP. In the right panel of Figure 4.10, we see the accumulation of603

the discrete spectrum at λ = 0, which also causes issues for the discretized problem.604

Figure 4.11 shows a similar plot in the µ(λ) plane.605

As a final experiment, we show a region near the essential spectrum at λ = 0606

(see Figure 4.12 (left)). We see clustering of the spectrum at this point, computed607

using InfBeyn. On the right, we have shown convergence to three eigenvalues as608

the number of quadrature nodes increases, where a circular contour around several609

eigenvalues is used. This demonstrates the effectiveness of infinite-dimensional con-610

tour methods such as InfBeyn for problems with accumulating spectra, owing to their611

locality, parallelizability, and rapid convergence.612

5. Conclusion. As we show with six examples, discretizing infinite-dimensional613

NEPs can modify, destabilize, or destroy eigenvalues. By delaying discretization, we614

proposed practical algorithms for computing spectra and pseudospectra of infinite-615

dimensional NEPs that avoid these issues, and we proved their stability and conver-616

gence. We hope that the paper generates interest in infinite-dimensional NEP solvers.617

For example, while InfBeyn deals with regions where the spectrum is discrete and our618
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method for computing pseudospectra can deal with the essential spectrum, we imag-619

ine that there is an infinite-dimensional algorithm for directly computing essential620

spectra of NEPs.621

Contour methods are not the only method that can be extended effectively to in-622

finite dimensions. Other methods include the infinite Arnoldi method for NEPs [56],623

rational approximation [48], and deflation techniques [36]. It is not clear whether one624

approach is inherently superior to another; this likely depends heavily on the specific625

problem. Some methods are also easier to formulate than others. Contour methods626

do offer at least one distinct advantage, though. They are often easier to analyze in627

infinite dimensions simply because they involve solutions of fixed infinite-dimensional628

linear systems (at least when one does not involve iterations of applying the con-629

tour integral operator), which facilitates proofs of properties such as convergence and630

stability, as demonstrated by the theorems presented in our paper. At the time of631

writing, it is an interesting question how other techniques must be adapted to cir-632

cumvent the discretization issues discussed in this paper. We hope that this paper633

inspires interest in these problems.634

We are also intrigued by some down-the-line applications such as reduced order635

models [17, 42, 70] and developing structure-preserving infinite-dimensional solvers.636

Infinite-dimensional NEP solvers offer the potential for more robust calculations of637

physically relevant spectra in challenging applications.638
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[72] R. Mennicken and M. Möller, Root functions, eigenvectors, associated vectors and the804

inverse of a holomorphic operator function, Archiv der Mathematik, 42 (1984), pp. 455–805
463.806

[73] , Non-self-adjoint boundary eigenvalue problems, vol. 192, Gulf Professional Publishing,807
2003.808

[74] W. Michiels, K. Green, T. Wagenknecht, and S.-I. Niculescu, Pseudospectra and stabil-809
ity radii for analytic matrix functions with application to time-delay systems, Lin. Alg.810

This manuscript is for review purposes only.



DISCRETIZATION EFFECTS FOR NONLINEAR EIGENPROBLEMS 27

Appl., 418 (2006), pp. 315–335.811
[75] S. Olver, GMRES for the differentiation operator, SIAM journal on numerical analysis, 47812

(2009), pp. 3359–3373.813
[76] S. Olver and A. Townsend, A fast and well-conditioned spectral method, SIAM Rev., 55814

(2013), pp. 462–489.815
[77] S. A. Orszag, Accurate solution of the Orr–Sommerfeld stability equation, J. Fluid Mech.,816

50 (1971), pp. 689–703.817
[78] S. C. Reddy, P. J. Schmid, and D. S. Henningson, Pseudospectra of the Orr–Sommerfeld818

operator, SIAM J. Appl. Math., 53 (1993), pp. 15–47.819
[79] M. Reed and B. Simon, Methods of Modern Mathematical Physics I: Functional Analysis,820

Academic Press, second ed., 1980.821
[80] K. Sakoda, N. Kawai, T. Ito, A. Chutinan, S. Noda, T. Mitsuyu, and K. Hirao, Photonic822

bands of metallic systems. I. Principle of calculation and accuracy, Phys. Rev. B, 64823
(2001), p. 045116.824
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