Career
- Since 2021 University Professor of Mathematical Physics, Faculty of Mathematics, University of Cambridge
- Since 2020 University Reader in Mathematical Physics, Faculty of Mathematics, University of Cambridge
- 2018-2020 University Lecturer Faculty of Mathematics, University of Cambridge
- 2014-18 Senior Research Associate Faculty of Mathematics, University of Cambridge.
- 2011 Title of Professor, awarded by the President of the Republic of Poland.
- 2006-2014, Newton Trust Lecturer in Mathematics, Faculty of Mathematics, University of Cambridge.
- 2005 Habilitation.
- 2003-present, Fellow, Tutor, Director of Studies, Senior Lecturer Clare College Cambridge.
- 1999-2002 Tutorial Fellow in Applied Mathematics and the Senior Mathematics Tutor at Magdalen College, Oxford. University Lecturer in Mathematics, Mathematical Institute, Oxford.
- 1995-1998 DPhil: Merton College and Mathematical Institute Oxford.
Research
Twistor Theory, Integrable Systems, Differential Geometry.
Selected Publications
- Dunajski M., and Tod, K. P. (2019) Conformally isometric embeddings and Hawking temperature. Class. Quant. Grav. 36, 125005.
- Atiyah, M., Dunajski, M. and Mason, L. (2017) Twistor theory at fifty: from contour integrals to twistor strings. Proceedings of the Royal Society, 473. 20170530
- Dunajski M. and Penrose, R. (2017) On the quadratic invariant of binary sextics. Math. Proc. Cambridge Philos. Soc. 162, 435445.
- Dunajski, M. (2009) Solitons, Instantons & Twistors. Oxford Graduate Texts in Mathematics, Oxford University Press.
- Bryant, R. L., Dunajski, M. and Eastwood, M. (2009) Metrisability of two-dimensional projective structures, J. Differential Geometry 83, 465-499
- Dunajski, M. (2002) Four-manifolds with a parallel real spinor, Proc. Roy. Soc. Lond. A 458, 1205-1222
- Dunajski, M., Mason, L.J., and Tod, K.P. (2001) Einstein--Weyl geometry, the dKP equation and twistor theory, J. Geom. Phys. 37, 63-93.
Publications
Point invariants of third-order ODEs and hyper-CR Einstein-Weyl structures
– Journal of Geometry and Physics
(2014)
86,
296
Cosmic jerk and snap in Penrose’s CCC model
– General Relativity and Gravitation
(2014)
46,
1
(doi: 10.1007/s10714-014-1814-z)
Einstein-Weyl geometry, dispersionless Hirota equation and Veronese webs
– Mathematical Proceedings of the Cambridge Philosophical Society
(2014)
157,
139
(doi: 10.1017/S0305004114000164)
Self-Dual Conformal Gravity
– Communications in Mathematical Physics
(2014)
331,
351
(doi: 10.1007/s00220-014-2046-5)
Summary of session A4: Complex and conformal methods in classical and quantum gravity
– General Relativity and Gravitation
(2014)
46,
1
(doi: 10.1007/s10714-014-1694-2)
Twistor Theory of the Airy Equation
– Symmetry, Integrability and Geometry: Methods and Applications
(2014)
10,
8
(doi: 10.3842/SIGMA.2014.037)
Einstein-Weyl geometry, dispersionless Hirota equation and Veronese webs
– Mathematical Proceedings of the Cambridge Philosophical Society
(2014)
157,
139
(doi: 10.1017/S0305004114000164)
Vortex motion on surfaces of small curvature
– Annals of Physics
(2013)
339,
570
(doi: 10.1016/j.aop.2013.10.002)
Enhanced Euclidean supersymmetry, 11D supergravity and SU(∞) Toda equation
– Journal of High Energy Physics
(2013)
2013,
89
(doi: 10.1007/JHEP10(2013)089)
Twistor Geometry of a Pair of Second Order ODEs
– Communications in Mathematical Physics
(2013)
321,
681
(doi: 10.1007/s00220-013-1729-7)
- <
- 4 of 10