Latest update
Jan 7, 2025

Astrophysical disks

My research interests concern flat spinning things in space, in other words astrophysical disks. I fell into this area as a student for no other reason than they were especially pretty. But they are also ubiquitous, owing to the universality of gravitational attraction and the conservation of angular momentum. And they are extremely important, because they regulate star, planet, and satellite formation, in addition to the growth of supermassive black holes. Though astrophysical disks can vary by ten orders of magnitude in size and differ hugely in composition, all share the same basic dynamics and many physical phenomena. Thanks to this, theoreticians, like me, can jump from one class of disk to another, and we rarely get bored.

Some of the disks I enjoy working on are: (a) Saturn's rings, which are about 100,000 km in radius and composed of icy boulders, (b) dwarf novae and X-ray binaries, which consist of disks encircling white dwarfs, neutron stars, and stellar mass black holes, some 500,000 km in radius and composed of ionised gas up to 10 million degrees, (c) protoplanetary disks, nebulae of dust and gas 10 billion km in radius, from which young stars condense out of galactic gas and in which planets ultimately form, and (d) active galactic nucleii, which contain a supermassive black hole (up to a billion times the mass of the sun) and a disk of hot gas that feeds it. For a (planetary ring oriented) review, you might have a read of this book chapter.

My primary interest is in the fluid dynamics of these objects, with a focus on instabilities, waves, and turbulence. I use a combination of analytic and semi-analytic techniques, supplemented with carefully directed, large-scale numerical simulations. Below you will find information on some of the specific research directions I am pursuing at the moment. Potential PhD students will also find some possible research topics.

Current research topics

The inner regions of protoplanetary disks :
Unsteady mass, angular momentum, and magnetic flux transport; competing outflow regions / competing current regions; dust flows and dust accumulation.

Turbulence, vortices, and dust in protoplanetary disks:
Streaming instabilities; vertical shear instability; inertial wave turbulence; zonal flows; formation and evolution of vortices; instabilities within dusty vortices.

Distorted disks:
The generation and evolution of eccentricities and warps; waves and parametric instabilities in non-circular flow; QPOs in hot accretion flows.

Gravitoturbulence:
Onset, saturation, and characterisation of gravitational instability; fragmentation; magnetic fields and the gravitoturbulent dynamo; applications to young protoplanetary disks and active galactic nuclei.

The magnetorotational instability:
The global dynamo; surface flows and currents; flux accumulation; numerical convergence issues; relationship to convection and thermal instability; applications to dwarf novae and low mass X-ray binaries.

Outflows and non-ideal MHD in protoplanetary disks :
Magnetic flux transport; dust transport and dusty winds; small-scale instability and time variability.

Turbulence in galaxy cluster plasma :
Models of 'extended MHD'; magnetothermal instability; heat-flux buoyancy instability; Parker instability; fronts.

Patterns, structure, and long term evolution of Saturn's rings : Self-gravity wakes versus viscous overstability; ballistic transport instability and sharp ring edges; bistability in dense granular gases; edge modes; shepherding and maintenance of sharp edges.

Students

Matthew Roberts (PhD, 2021-)
Nathan Magnan (PhD, 2021-2024)
Lorenzo Perrone (PhD, 2018-2022)
Loren Held (PhD, 2016-2020)
Janosz Dewberry (PhD, 2015-2019)
Johnathan Ross (PhD, 2013-2017)

Eleonora Svanberg (Intern, 2022)
Remy Larue (MSc, 2019-2020))
Roxanna Rosca (Intern, 2015)
Claire Guepin (Intern, 2014)
Marie Chupeau (MSc, 2011)

Publications

76. G. I. Ogilvie, H. N. Latter, G. Lesur, 2025. The vertical shear instability in protoplanetary discs as an outward travelling wave. I. Linear theory, MNRAS, submitted.

75. N. Magnan, T. Heinemann, H. N. Latter, 2024. The physical mechanism of the streaming instability, MNRAS, 534, 3944.
74. C. Cui, S. Marino, Q. Kral, H. N. Latter, 2024. Dynamics of circumstellar gas in debris disks, MNRAS, 530, 1766.
73. N. Magnan, T. Heinemann, H. N. Latter, 2024. A physical picture for the acoustic resonant drag instability, MNRAS, 529, 688.

72. R. Larue, H. N. Latter, H. Rein, 2023. Thermal hysteresis and front propagation in dense planetary rings, MNRAS, 520, 1128.

71. E. Svanberg, C. Cui, H. N. Latter, 2022. Wavelike nature of the vertical shear instability in global protoplanetary disks, MNRAS, 514, 4581.
70. W. Bethune, H. N. Latter, 2022. The GI dynamo in global simulations of gravito-turbulent disks, AA, 663, 138.
69. L. M. Perrone, H. N. Latter, 2022. Magneto-Thermal Instability In Galaxy Clusters II: Three-Dimensional Simulations. MNRAS, 513, 4625.
68. L. M. Perrone, H. N. Latter, 2022. Magneto-Thermal Instability In Galaxy Clusters I: Theory and Two-Dimensional Simulations. MNRAS, 513. 4605.
67. C. Cui, H. N. Latter, 2022. The saturation of the VSI in protoplanetary disks via parametric instability, MNRAS, 512, 1639.
66. H. N. Latter, M. W. Kunz, 2022. The vertical shear instability in poorly ionized, magnetized protoplanetary discs. MNRAS, 511, 1182.
65. L. E. Held, H. N. Latter, 2022. The stress-pressure lag in MRI turbulence and its implications for thermal instability in accretion discs. MNRAS, 510, 146.

64. R. Teed, H. N. Latter, 2021. Axisymmetric simulations of the convective overstability in protoplanetary discs. MNRAS, 507, 5523.
63. A. Riols, W. Xu, G. Lesur, M. W. Kunz, H. Latter, 2021. Gravito-turbulence and dynamo in poorly ionized protostellar discs. I. Zero-net-flux case. MNRAS, 506, 1407.
62. L. E. Held, H. N. Latter, 2021. Magnetohydrodynamic convection in accretion discs. MNRAS, 504, 2949.
61. W. Bethune, H. Latter, W. Kley, 2021. Spiral structures in gravito-turbulent gaseous disks. AA, 650, A49.

60. J. Dewberry, H. N. Latter, G. I. Ogilvie, S. Fromang, 2020. HFQPOs and discoseismic mode excitation in eccentric, relativistic discs. II. MHD simulations. MNRAS, 497, 451.
59. J. Dewberry, H. N. Latter, G. I. Ogilvie, S. Fromang, 2020. HFQPOs and discoseismic mode excitation in eccentric, relativistic discs. I. Hydrodynamical simulations. MNRAS, 497, 435.
58. W. Bethune, H. N. Latter , 2020. Electric heating and angular momentum transport in laminar models of protoplanetary disks. MNRAS, 494, 6103.
57. A. Riols, B. Roux, H. N. Latter, G. Lesur, 2020. Dust dynamics and vertical settling in gravitoturbulent protoplanetary discs. MNRAS, 493, 4631.
56. H. Deng, L. Mayer, H. N. Latter, 2020. Global simulations of self-gravitating magnetized protoplanetary disks. ApJ,891, 154.

55. H. Deng, L. Mayer, H. N. Latter, P. F. Hopkins, X. Bai, 2019. Local simulations of MRI turbulence with meshless methods. ApJS, 241, 26.
54. J. Dewberry, H. N. Latter, G. I. Ogilvie, 2019. Quasi-periodic oscillations, trapped inertial waves and strong toroidal magnetic fields in relativistic accretion discs. MNRAS, 483, 1609.
53. A. Riols, H. N. Latter, 2019. Gravitoturbulent dynamos in astrophysical discs. MNRAS, 482, 3989.
52. A. Hillier, A. Barker, I. Arregui, H. N. Latter, 2019. On Kelvin–Helmholtz and parametric instabilities driven by coronal waves. MNRAS, 482, 1143.

51. L. E. Held, H. N. Latter, 2018. Hydrodynamic convection in accretion discs. MNRAS, 480, 4797.
50. J. Ross, H. N. Latter, 2018. Dissipative structures in magnetorotational turbulence. MNRAS, 477, 3329.
49. A. Riols, H. N. Latter, 2018. Spiral density waves and vertical circulation in protoplanetary disks. MNRAS, 476, 5115.
48. J. Dewberry, H. N. Latter, G. I. Ogilvie, 2018. Quasi-periodic oscillations and the global modes of relativistic, MHD accretion discs. MNRAS, 476, 4085.
47. H. N. Latter, G. I. Ogilvie, H. Rein, 2018. Planetary rings and other astrophysical disks. In: Tiscareno, Murray (Eds), Planetary Ring Systems: Properties, Structure, and Evolution , CUP, Cambridge.
46. P. Estrada, R. Durisen, H. Latter, 2018. Meteoroid Bombardment and Ballistic Transport in Planetary Ring Systems. In: Tiscareno, Murray (Eds), Planetary Ring Systems: Properties, Structure, and Evolution, CUP, Cambridge.
45. H. N. Latter, J. Papaloizou, 2018. Vortices and the saturation of the vertical shear instability in protoplanetary disks. MNRAS, 474, 3110.
44. A. Riols, H. N. Latter, 2018. Magnetorotational instability and dynamo action in gravitoturbulent astrophysical discs. MNRAS, 474, 2212.

43. H. N. Latter, J. C. B. Papaloizou, 2017. Local models of astrophysical discs. MNRAS, 472, 1432.
42. A. Riols, H. N. Latter, S. J. Paardekooper, 2017. Gravito-turbulence and the excitation of small-scale parametric instability in astrophysical discs. MNRAS, 471, 317.
41. J. Ross, H. N. Latter, 2017. Turbulent fluctuations and the excitation of Z Cam outbursts. MNRAS, 470, 34.
40. J. Ross, H. N. Latter, M. Tehranchi, 2017. MRI turbulence and thermal instability in accretion disks. MNRAS, 468, 2401.
39. H. N. Latter, R. Rosca, 2017. On dust-gas gravitational instabilities in protoplanetary discs. MNRAS, 464, 1923.

38. A. Riols, G. I. Ogilvie, H. Latter, J. P. Ross, 2016. Magnetorotationally driven wind cycles in local disc models. MNRAS, 463, 3096.
37. G. Lesur, H. Latter, 2016. On the survival of zombie vortices in protoplanetary discs. MNRAS letters, 462, 4549.
36. Q. Kral, H. Latter, 2016. The magnetorotational instability in debris-disc gas. MNRAS, 461, 1614.
35. A. Riols, H. Latter, 2016. Gravitoturbulence in magnetised protostellar discs. MNRAS, 460, 2223.
34. H. N. Latter, 2016. On the convective overstability in protoplanetary discs. MNRAS, 455, 2608.
33. J. Ross, H. N. Latter, J. Guilet, 2016. The stress-pressure relationship in simulations of MRI-induced turbulence. MNRAS, 455, 526.

32. H. N. Latter, S. Fromang, J. Faure, 2015. Local and global aspects of the linear MRI in accretion disks. MNRAS, 453, 3257.
31. A. J. Barker, H. N. Latter, 2015. On the vertical-shear instability in astrophysical discs. MNRAS, 450, 21.
30. J. Faure, S. Fromang, H. Latter, H. Meheut, 2015. Vortex cycles at the inner edges of dead zones in protoplanetary disks. A & A, 573, 132.

29. H. N. Latter, G. I. Ogilvie, M. Chupeau, 2014. The ballistic transport instability in Saturn's rings III: numerical simulations. MNRAS, 441, 2773.
28. H. N. Latter, G. I. Ogilvie, M. Chupeau, 2014. The ballistic transport instability in Saturn's rings II: nonlinear wave dynamics. MNRAS, 441, 2760.
27. J. Faure, S. Fromang, H. Latter, 2014. Thermodynamics of the dead-zone inner edge in protoplanetary disks. A & A, 564, 15.

26. G. I. Ogilvie, H. N. Latter, 2013. Hydrodynamical instability in warped astrophysical discs. MNRAS, 433, 2420.
25. G. I. Ogilvie, H. N. Latter, 2013. Local and global dynamics of warped astrophysical discs. MNRAS, 433, 2403.
24. S. Fromang, H. Latter, G. Lesur, G. Ogilvie, 2013. Local outflows from turbulent accretion disks. A & A, 552, 71.
23. H. Rein, H. N. Latter, 2013. Large-scale N-body simulations of the viscous overstability in Saturn's rings. MNRAS, 431, 145.

22. H. N. Latter, G. I. Ogilvie, M. Chupeau, 2012. The ballistic transport instability in Saturn's rings I: formalism and linear theory. MNRAS, 427, 2336.
21. H. N. Latter, J. C. B. Papaloizou, 2012. Hysteresis and thermal limit cycles in MRI simulations of accretion discs. MNRAS, 426, 1107.
20. H. N. Latter, S. A. Balbus, 2012. The dynamics of inner dead-zone boundaries in protoplanetary disks. MNRAS, 424, 1977.
19. Z. M. Leinhardt, G. I. Ogilvie, H. N. Latter, E. Kokubo, 2012. Tidal disruption of satellites and formation of narrow rings. MNRAS, 424, 1419.
18. H. N. Latter, H. Rein, G. I. Ogilvie, 2012. The gravitational instability of a stream of co-orbital particles. MNRAS, 423, 1267.
17. H. N. Latter, M. W. Kunz, 2012. The HBI in a quasi-global model of the intracluster medium. MNRAS, 423, 1964.
16. S. A. Balbus, H. N. Latter, N. O. Weiss, 2012. Global model of differential rotation in the Sun. MNRAS, 420, 2457.

15. E. Jacquet, S. A. Balbus, H. N. Latter, 2011. On linear dust-gas streaming instabilities in protoplanetary discs. MNRAS, 415, 3591.

14. H. N. Latter & G. I. Ogilvie, 2010. Hydrodynamical simulations of viscous overstability in Saturn's rings. Icarus, 210, 318.
13. S. A. Balbus & H. N. Latter, 2010. The tachocline and differential rotation in the Sun. MNRAS, 407, 2565.
12. H. N. Latter, S. Fromang, O. Gressel, 2010. MRI channels flows in vertically-stratified models of accretion disks. MNRAS, 406, 848.
11. H. Latter & D. J. Ivers, 2010. Spherical single-roll dynamos at large magnetic Reynolds numbers. Physics of Fluids, 22, 066601.
10. H. N. Latter, J. F. Bonart, S. A. Balbus, 2010. Resistive double-diffusive instability in the dead-zones of protostellar disks. MNRAS, 405, 1831.

9. S. A. Balbus, J. Bonart, H. Latter, N. Weiss, 2009. On differential rotation and convection in the Sun. MNRAS, 400, 176.
8. H. N. Latter & S. A. Balbus, 2009. Inertial waves near corotation in 3D hydrodynamical disks. MNRAS, 399, 1058.
7. H. N. Latter & G. I. Ogilvie, 2009. The viscous overstability, nonlinear wavetrains, and fine-scale structure in dense planetary rings. Icarus, 202, 565.
6. P. Lesaffre, S. Balbus & H. N. Latter, 2009. A comparison of local simulations and reduced models of MRI-induced turbulence. MNRAS, 396, 779.
5. H. N. Latter, P. Lesaffre & S. A. Balbus, 2009. MRI channel flows and their parasites. MNRAS, 394, 715.

4. H. N. Latter & G. I. Ogilvie, 2008. Dense planetary rings and the viscous overstability. Icarus, 195, 725.
3. H. N. Latter & G. I. Ogilvie, 2006. Viscous overstability and eccentricity evolution in three-dimensional gaseous disks. MNRAS, 372, 1829.
2. H. N. Latter & G. I. Ogilvie, 2006. The linear stability of dilute particulate rings. Icarus, 184, 498.
1. H. Latter & D. Ivers, 2004. Kinematic roll dynamo computations at large magnetic Reynolds numbers. ANZIAM J., 45(E), C905.


*Go here for papers at the arXiv