Astrophysical disks
My research interests concern flat spinning things in space, in other
words astrophysical disks. I fell into this
area as a student for no other reason than they were especially
pretty. But they are also ubiquitous, owing to
the universality of gravitational attraction and the
conservation of angular momentum.
And they are extremely important, because they regulate star,
planet, and satellite formation, in addition to the growth of supermassive black
holes.
Though astrophysical disks can vary by ten orders of magnitude in
size and differ hugely in composition, all share the same
basic dynamics and many physical phenomena. Thanks to this,
theoreticians, like me, can jump from one class of disk to
another, and we rarely get bored.
Some of the disks
I enjoy working on are: (a) Saturn's rings, which are about 100,000 km in radius and
composed of icy boulders, (b) dwarf novae and X-ray binaries, which consist of disks
encircling white
dwarfs, neutron stars, and stellar mass black holes,
some 500,000 km in radius and composed of ionised gas up to 10 million
degrees, (c) protoplanetary disks, nebulae of dust and gas 10 billion
km in radius, from which young stars condense out
of galactic gas and in which planets ultimately form, and (d)
active galactic nucleii, which contain a supermassive black hole (up to
a billion times the mass of the sun) and a disk of hot gas that feeds
it. For a (planetary ring oriented) review, you might have a read of
this book chapter.
My primary interest is in the fluid dynamics of these objects, with a focus
on instabilities, waves, and turbulence.
I use a combination of analytic and semi-analytic techniques,
supplemented with carefully directed, large-scale numerical
simulations. Below you will find
information on some of the
specific research directions I am pursuing at the moment. Potential
PhD students will
also find some possible research topics.
Current research topics
The inner regions of protoplanetary disks :
Unsteady mass, angular momentum, and magnetic flux transport;
competing outflow regions / competing current regions; dust flows and
dust accumulation.
Turbulence, vortices, and dust in
protoplanetary disks:
Streaming instabilities; vertical shear instability; inertial wave
turbulence; zonal flows; formation and evolution of vortices;
instabilities within dusty vortices.
Distorted disks:
The generation and evolution of eccentricities and warps; waves and
parametric instabilities in non-circular flow; QPOs in hot accretion flows.
Gravitoturbulence:
Onset, saturation, and characterisation of gravitational instability;
fragmentation; magnetic
fields and the gravitoturbulent dynamo; applications to young
protoplanetary disks and active galactic nuclei.
The magnetorotational instability:
The global dynamo;
surface flows and currents; flux accumulation; numerical convergence issues;
relationship to convection and thermal instability; applications to
dwarf novae and low mass X-ray binaries.
Outflows and non-ideal MHD in protoplanetary disks :
Magnetic flux transport; dust transport and dusty winds; small-scale instability and
time variability.
Turbulence in galaxy cluster plasma :
Models of 'extended MHD'; magnetothermal instability; heat-flux buoyancy
instability; Parker instability; fronts.
Patterns, structure, and long term evolution of Saturn's
rings :
Self-gravity wakes versus viscous overstability;
ballistic transport instability and sharp ring edges; bistability in
dense granular gases; edge modes; shepherding and maintenance of sharp edges.
Students
Matthew Roberts (PhD, 2021-)
Nathan Magnan (PhD, 2021-2024)
Lorenzo Perrone (PhD, 2018-2022)
Loren Held (PhD, 2016-2020)
Janosz Dewberry (PhD, 2015-2019)
Johnathan Ross (PhD, 2013-2017)
Eleonora Svanberg (Intern, 2022)
Remy Larue (MSc, 2019-2020))
Roxanna Rosca (Intern, 2015)
Claire Guepin (Intern, 2014)
Marie Chupeau (MSc, 2011)
Publications
76. G. I. Ogilvie, H. N. Latter, G. Lesur, 2025.
The vertical shear instability in protoplanetary discs as an
outward travelling wave. I. Linear theory, MNRAS, submitted.
75. N. Magnan, T. Heinemann, H. N. Latter, 2024.
The physical mechanism of the streaming instability,
MNRAS, 534, 3944.
74. C. Cui, S. Marino, Q. Kral, H. N. Latter, 2024.
Dynamics of circumstellar gas in debris disks, MNRAS, 530, 1766.
73. N. Magnan, T. Heinemann, H. N. Latter, 2024.
A physical picture for the acoustic resonant drag instability,
MNRAS, 529, 688.
72. R. Larue, H. N. Latter, H. Rein, 2023.
Thermal hysteresis and front propagation in dense planetary rings,
MNRAS, 520, 1128.
71. E. Svanberg, C. Cui, H. N. Latter, 2022.
Wavelike nature of the vertical shear instability in global
protoplanetary disks, MNRAS, 514, 4581.
70. W. Bethune, H. N. Latter, 2022.
The GI dynamo in global simulations of gravito-turbulent disks, AA,
663, 138.
69. L. M. Perrone, H. N. Latter, 2022. Magneto-Thermal
Instability In Galaxy Clusters II: Three-Dimensional
Simulations. MNRAS, 513, 4625.
68. L. M. Perrone, H. N. Latter, 2022. Magneto-Thermal
Instability In Galaxy Clusters I: Theory and Two-Dimensional
Simulations. MNRAS, 513. 4605.
67. C. Cui, H. N. Latter, 2022.
The saturation of the VSI in protoplanetary disks via parametric
instability, MNRAS, 512, 1639.
66. H. N. Latter, M. W. Kunz, 2022. The vertical shear instability
in poorly ionized,
magnetized protoplanetary discs. MNRAS, 511, 1182.
65. L. E. Held, H. N. Latter, 2022. The stress-pressure lag in
MRI turbulence and its implications for thermal instability in
accretion discs. MNRAS, 510, 146.
64. R. Teed, H. N. Latter, 2021. Axisymmetric simulations of
the convective overstability in protoplanetary discs. MNRAS, 507, 5523.
63. A. Riols, W. Xu, G. Lesur, M. W. Kunz, H. Latter,
2021. Gravito-turbulence and dynamo in poorly ionized protostellar
discs. I. Zero-net-flux case. MNRAS, 506, 1407.
62. L. E. Held, H. N. Latter, 2021.
Magnetohydrodynamic convection in accretion discs. MNRAS, 504, 2949.
61. W. Bethune, H. Latter, W. Kley,
2021.
Spiral structures in gravito-turbulent gaseous disks. AA, 650, A49.
60. J. Dewberry, H. N. Latter, G. I. Ogilvie, S. Fromang, 2020.
HFQPOs and discoseismic mode excitation in eccentric, relativistic
discs. II. MHD simulations. MNRAS, 497, 451.
59. J. Dewberry, H. N. Latter, G. I. Ogilvie, S. Fromang, 2020.
HFQPOs and discoseismic mode excitation in eccentric, relativistic
discs. I. Hydrodynamical simulations. MNRAS, 497, 435.
58. W. Bethune, H. N. Latter , 2020. Electric heating and
angular momentum transport in laminar models of protoplanetary
disks. MNRAS, 494, 6103.
57. A. Riols, B. Roux, H. N. Latter, G. Lesur, 2020.
Dust dynamics and vertical settling in gravitoturbulent protoplanetary discs.
MNRAS, 493, 4631.
56. H. Deng, L. Mayer, H. N. Latter,
2020. Global simulations of self-gravitating magnetized protoplanetary
disks.
ApJ,891, 154.
55. H. Deng, L. Mayer, H. N. Latter, P. F. Hopkins, X. Bai,
2019. Local simulations of MRI turbulence with meshless methods.
ApJS, 241, 26.
54. J. Dewberry, H. N. Latter, G. I. Ogilvie, 2019.
Quasi-periodic oscillations, trapped inertial waves
and strong toroidal magnetic fields in relativistic
accretion discs. MNRAS, 483, 1609.
53. A. Riols, H. N. Latter, 2019.
Gravitoturbulent dynamos in astrophysical discs.
MNRAS, 482, 3989.
52. A. Hillier, A. Barker, I. Arregui, H. N. Latter, 2019.
On Kelvin–Helmholtz and parametric instabilities driven
by coronal waves. MNRAS, 482, 1143.
51. L. E. Held, H. N. Latter, 2018.
Hydrodynamic convection in accretion discs.
MNRAS, 480, 4797.
50. J. Ross, H. N. Latter, 2018.
Dissipative structures in magnetorotational turbulence.
MNRAS, 477, 3329.
49. A. Riols, H. N. Latter, 2018.
Spiral density waves and vertical circulation in
protoplanetary disks.
MNRAS, 476, 5115.
48. J. Dewberry, H. N. Latter, G. I. Ogilvie, 2018.
Quasi-periodic oscillations and the global modes of relativistic,
MHD accretion discs.
MNRAS, 476, 4085.
47. H. N. Latter, G. I. Ogilvie, H. Rein, 2018.
Planetary rings and other astrophysical disks. In:
Tiscareno, Murray (Eds), Planetary
Ring Systems: Properties, Structure, and Evolution , CUP, Cambridge.
46. P. Estrada, R. Durisen, H. Latter, 2018.
Meteoroid Bombardment and Ballistic Transport in Planetary Ring
Systems.
In: Tiscareno, Murray (Eds), Planetary
Ring Systems: Properties, Structure, and Evolution, CUP, Cambridge.
45. H. N. Latter, J. Papaloizou, 2018.
Vortices and the saturation of the vertical
shear instability in protoplanetary disks. MNRAS, 474, 3110.
44. A. Riols, H. N. Latter, 2018.
Magnetorotational instability and dynamo action
in gravitoturbulent astrophysical discs.
MNRAS, 474, 2212.
43. H. N. Latter, J. C. B. Papaloizou, 2017.
Local models of astrophysical discs. MNRAS, 472, 1432.
42. A. Riols, H. N. Latter, S. J. Paardekooper, 2017.
Gravito-turbulence and the excitation of small-scale
parametric instability in astrophysical discs.
MNRAS, 471, 317.
41. J. Ross, H. N. Latter, 2017.
Turbulent fluctuations and the excitation of Z Cam outbursts.
MNRAS, 470, 34.
40. J. Ross, H. N. Latter, M. Tehranchi, 2017.
MRI turbulence and thermal instability in accretion disks.
MNRAS, 468, 2401.
39. H. N. Latter, R. Rosca, 2017.
On dust-gas gravitational instabilities in protoplanetary discs.
MNRAS, 464, 1923.
38. A. Riols, G. I. Ogilvie, H. Latter, J. P. Ross, 2016.
Magnetorotationally driven wind cycles in local disc models. MNRAS,
463, 3096.
37. G. Lesur, H. Latter, 2016.
On the survival of zombie vortices in protoplanetary discs. MNRAS
letters, 462, 4549.
36. Q. Kral, H. Latter, 2016.
The magnetorotational instability in debris-disc gas. MNRAS, 461, 1614.
35. A. Riols, H. Latter, 2016.
Gravitoturbulence in magnetised protostellar discs. MNRAS, 460, 2223.
34. H. N. Latter, 2016. On the convective
overstability in protoplanetary discs. MNRAS, 455, 2608.
33. J. Ross, H. N. Latter, J. Guilet, 2016. The stress-pressure
relationship in simulations of MRI-induced turbulence. MNRAS, 455, 526.
32. H. N. Latter, S. Fromang, J. Faure, 2015. Local and global aspects of the
linear MRI in accretion disks. MNRAS, 453, 3257.
31. A. J. Barker, H. N. Latter, 2015.
On the vertical-shear instability in astrophysical discs. MNRAS, 450, 21.
30. J. Faure, S. Fromang, H. Latter, H. Meheut, 2015.
Vortex cycles at the inner edges of dead zones in protoplanetary
disks. A & A, 573, 132.
29. H. N. Latter, G. I. Ogilvie, M. Chupeau, 2014.
The ballistic transport instability in Saturn's rings III: numerical
simulations. MNRAS, 441, 2773.
28. H. N. Latter, G. I. Ogilvie, M. Chupeau, 2014.
The ballistic transport instability in Saturn's rings II: nonlinear
wave dynamics. MNRAS, 441, 2760.
27. J. Faure, S. Fromang, H. Latter, 2014.
Thermodynamics of the dead-zone inner edge in protoplanetary
disks. A & A, 564, 15.
26. G. I. Ogilvie, H. N. Latter, 2013. Hydrodynamical instability
in warped astrophysical discs. MNRAS, 433, 2420.
25. G. I. Ogilvie, H. N. Latter, 2013. Local and global dynamics
of warped astrophysical discs. MNRAS, 433, 2403.
24. S. Fromang, H. Latter, G. Lesur, G. Ogilvie, 2013. Local
outflows from turbulent accretion disks. A & A, 552, 71.
23. H. Rein, H. N. Latter, 2013. Large-scale N-body simulations of the viscous overstability in
Saturn's rings. MNRAS, 431, 145.
22. H. N. Latter, G. I. Ogilvie, M. Chupeau, 2012. The ballistic
transport instability in Saturn's rings I: formalism and linear
theory. MNRAS, 427, 2336.
21. H. N. Latter, J. C. B. Papaloizou, 2012. Hysteresis and
thermal limit cycles in MRI simulations of accretion discs. MNRAS,
426, 1107.
20. H. N. Latter, S. A. Balbus, 2012.
The dynamics of inner dead-zone boundaries in protoplanetary
disks. MNRAS, 424, 1977.
19. Z. M. Leinhardt, G. I. Ogilvie, H. N. Latter, E. Kokubo,
2012.
Tidal disruption of satellites and formation of narrow rings. MNRAS,
424, 1419.
18. H. N. Latter, H. Rein, G. I. Ogilvie, 2012.
The gravitational instability of a stream of co-orbital
particles. MNRAS, 423, 1267.
17. H. N. Latter, M. W. Kunz, 2012. The HBI in a quasi-global model of
the intracluster medium. MNRAS, 423, 1964.
16. S. A. Balbus, H. N. Latter, N. O. Weiss, 2012.
Global model of differential rotation in the Sun. MNRAS, 420, 2457.
15. E. Jacquet, S. A. Balbus, H. N. Latter, 2011.
On linear dust-gas streaming instabilities in protoplanetary
discs. MNRAS, 415, 3591.
14. H. N. Latter & G. I. Ogilvie, 2010. Hydrodynamical simulations of viscous
overstability in Saturn's rings. Icarus, 210, 318.
13. S. A. Balbus & H. N. Latter, 2010.
The tachocline and differential rotation in the Sun. MNRAS, 407, 2565.
12. H. N. Latter, S. Fromang, O. Gressel, 2010. MRI channels flows in
vertically-stratified models
of accretion disks. MNRAS, 406, 848.
11. H. Latter & D. J. Ivers, 2010. Spherical single-roll dynamos at large
magnetic Reynolds numbers. Physics of Fluids, 22, 066601.
10. H. N. Latter, J. F. Bonart, S. A. Balbus, 2010. Resistive double-diffusive
instability in the dead-zones of protostellar disks. MNRAS, 405, 1831.
9. S. A. Balbus, J. Bonart, H. Latter, N. Weiss, 2009. On differential
rotation and convection in the Sun. MNRAS, 400, 176.
8. H. N. Latter & S. A. Balbus, 2009. Inertial waves near corotation in
3D hydrodynamical disks. MNRAS, 399, 1058.
7. H. N. Latter & G. I. Ogilvie, 2009. The viscous overstability,
nonlinear wavetrains, and fine-scale structure in dense planetary
rings. Icarus, 202, 565.
6. P. Lesaffre, S. Balbus & H. N. Latter, 2009. A comparison of local
simulations and reduced models of MRI-induced turbulence. MNRAS, 396, 779.
5. H. N. Latter, P. Lesaffre & S. A. Balbus, 2009. MRI channel flows and
their parasites. MNRAS, 394, 715.
4. H. N. Latter & G. I. Ogilvie, 2008. Dense planetary rings and the
viscous overstability. Icarus, 195, 725.
3. H. N. Latter & G. I. Ogilvie, 2006. Viscous overstability and
eccentricity evolution in three-dimensional gaseous disks. MNRAS,
372, 1829.
2. H. N. Latter & G. I. Ogilvie, 2006. The linear stability of dilute
particulate rings. Icarus, 184, 498.
1. H. Latter & D. Ivers, 2004. Kinematic roll dynamo computations
at large magnetic Reynolds numbers. ANZIAM J., 45(E), C905.
*Go here for papers at the arXiv