|
|
Goldstein Lab
Teaching
Soft Matter & Biological Physics (Part III, Michaelmas 2014)
Prof. Raymond E. Goldstein FRS (DAMTP) and Dr. Ulrich F. Keyser (Cavendish)
This course will provide an overview of the physics and mathematical description of living systems.
The range of subjects and approaches, from phenomenology to detailed calculations, will be of interest to
students from applied mathematics, physics, and computational biology. The topics to be covered will
span the range of length scales from molecular to ecological, with emphasis on key paradigms. Introductory
material on statistical mechanics will provide background for much of the course. The subsequent
topics will include Microscopic Physics - van der Waals forces, screened electrostatics,
Brownian motion, fluctuation-dissipation theorem; Fluctuation-Induced Forces
- polymer physics, random walks, entropic forces, stiff chains, self-avoidance, dynamics, protein folding;
Elasticity - differential geometry of curves
and suraces, linear elasticity theory, thin plates and rods, Helfrich model for membranes, elastohydrodynamics;
Chemical Kinetics and Pattern Formation - Michaelis-Menten kinetics, oscillations, excitable
media, ion channels, action potentials, reaction-diffusion dynamics, Fitzhugh-Nagumo model, spiral waves;
Dynamics - life at low Reynolds numbers, chemoreception, advection-diffusion problems.
The material is for your private use. Please do not distribute. PDFs of articles, in case we have them, are accessible via links below.
PRELIMINARY Lecture notes
You can obtain a pdf of the preliminary lecture notes (now with literature list) below:
These will be updated constantly.
Caveat emptor: these will surely contain a significant number of errors and typos - so please
let us know when you find them. Please help us
and send an email with your corrections to Ray (reg53) or Ulrich (ufk20) .
Examples Classes
- 1: Thursday, 23 October, 2014: MR14, Centre for Mathematical Sciences (CMS): 16:30-18:00
- 2: Thursday, 6 November, 2014: MR14, Centre for Mathematical Sciences (CMS): 16:30-18:00
- 3: Thursday, 27 November, 2014: MR14, Centre for Mathematical Sciences (CMS): 16:30-18:00
- 4 (physics): Tuesday, 2 December, 2014: Small Lecture Theatre, Cavendish Laboratory: 16:30-18:00
- 4 (math): Thursday, 15 January, 2015: MR14, Centre for Mathematical Sciences (CMS): 16:30-18:00
Examples Sheets
Handouts/Lectures
Supplementary Reading
The following is a collection of references (mostly from the primary literature)
for the main topics of the course. These are being added as the course progresses.
Below you find a list of books and topics which we recommend for reading.
Introductory Reading
- P. Nelson. Biological Physics. W.H. Freeman (2007).
- J.D. Murray. Mathematical Biology I. & II. Springer (2007, 2008).
- K. Dill & S. Bromberg. Molecular Driving Forces. Garland (2009).
Reading to complement course material
- B. Alberts, A. Johnson, J. Lewis, M. Raff, K. Roberts and P. Walter. Molecular Biology
of the Cell. 5th edition. Garland Science (2007).
- J.N. Israelachvili. Intermolecular and Surface Forces. 2nd edition.
Academic Press (1992).
- E.J.W. Verwey and J.Th.G. Overbeek.
Theory of the Stability of Lyophobic Colloids. Elsevier (1948).
- M. Doi and S.F. Edwards. The Theory of Polymer Dynamics. OUP (1986).
- A. Parsegian. Van der Waals Forces. CUP (2005).
- D. Andelman & W. Poon. Condensed Matter Physics in Molecular and Cell Biology.
Taylor & Francis (2006).
- H.C. Berg. Random Walks in Biology. Princeton University Press (1993).
- E. Schrödinger. What is Life? CUP (1992).
- M. Haw. Middle World. Macmillan (2006).
- J.B.S. Haldane: On Being the Right Size
van der Waals forces
- B.R. Holstein, "The van der Waals interaction,"
Am. J. Phys. 69, 441-449 (2000).
- H.C. Hamaker, "The London-van der Waals attraction
between spherical particles,"
Physica 4, 1058-1072 (1937).
- B.M. Axilrod and E. Teller, "Interaction of the van
der Waals type between three atoms," J. Chem. Phys. 11, 299-300 (1943).
- K.K. Mon, N.W. Ashcroft, and G.V. Chester,
"Core polarization and the structure of simple metals,"
Phys. Rev. B 19, 5103-5122 (1979).
DLVO Theory and Charged Membranes
- M. Winterhalter and W. Helfrich,
"Effect of surface charge on the curvature elasticity of membranes,"
J. Phys. Chem. 92, 6865-6867 (1988).
- H.N.W. Lekkerkerker,
"Contribution of the electric double layer to the curvature elasticity of charged
amphiphilic monolayers,"
Physica A 159, 319-328 (1989).
- D.J. Mitchell and B.W. Ninham,
"Curvature elasticity of charged membranes,"
Langmuir 5, 1121-1123 (1989).
- R.E. Goldstein, A.I. Pesci, and
V. Romero-Rochin,
"Electric double layers near modulated surfaces,"
Phys. Rev. A 41, 5504-5515 (1990).
- B. Duplantier, R.E. Goldstein, V.
Romero-Rochin, and A.I. Pesci,
"Geometrical and topological aspects of electric double layers near curved surfaces,"
Phys. Rev. Lett. 65, 508-511 (1990).
- C. Gutsche, U.F. Keyser, K. Kegler,
F. Kremer, and P. Linse, "Forces between single pairs of charged colloids in aqueous solutions,"
Phys. Rev. E 76, 031403 (2007).
Hydration Repulsion
Manning Condensation
Brownian Motion
Entropic Forces
Elastohydrodynamics
- K.E. Machin,
"Wave propagation along flagella,"
J. Exp. Biol. 35, 796-806 (1958).
- C.H. Wiggins, D. Riveling, A. Ott, and R.E. Goldstein,
"Trapping and wiggling: elastohydrodynamics of driven microfilaments,"
Biophys. J. 74, 1043-1060 (1998).
- C. Levinthal and H.R. Crane,
"On the Unwinding of DNA,"
Proc. Natl. Acad. Sci. (USA) 42, 436-438 (1956).
- C.W. Wolgemuth, T.R. Powers, and R.E. Goldstein,
"Twirling and Whirling: Viscous Dynamics of Rotating Elastic Filaments,"
Phys. Rev. Lett. 84, 1623-1626 (2000).
- R.E. Goldstein, T.R. Powers, and C.H. Wiggins,
"Viscous Nonlinear Dynamics of Twist and Writhe,"
Phys. Rev. Lett. 80, 5232-5235 (1998).
Buckling Filaments
Chemoreception
Pattern Formation
Reviews
Research Papers
- A.M. Turing, "The chemical basis of morphogenesis,"
Phil. Trans. Roy. Soc. 237, 37-72 (1952).
- Q. Ouyang and H.L. Swinney,
"Transition from a uniform state to hexagonal and striped turing patterns,"
Nature 352, 610-612 (1991).
- K.J. Lee, W.D. McCormick, Q. Ouyang, and H.L. Swinney,
"Pattern formation by interacting chemical fronts," Science 261, 192-194 (1993).
- R.E.Goldstein, D.M. Petrich, and D.J. Muraki,
"Interface proliferation and the growth of labyrinths in a reaction-diffusion system,"
Phys. Rev. E 53, 3933-3957 (1996).
Action Potentials
Optical Tweezers
Books
Background for Langevin equation and harmonic oscillators: Chaikin & Lubensky, "Principles of Condensed Matter Physics", chapter 7.5
More concise on Langevin and fluctuation-dissipation: Dill & Bromber, "Molecular Driving Forces", chapter 18
Reviews
- K.C. Neuman and S.M. Block,
"Optical Trapping", Rev. Sci. Instr. 75, 2787-2809 (2004)
- F. Gittes and C.F. Schmidt,
"Signals and Noise in Micromechanical Measurements", Methods in Cell Biology 55, 129-156
(1998)
- C. Bustamante, Z. Bryant, and
S.B. Smith, "Ten Years of Tension: Single Molecule DNA mechanics", Nature 421, 423-427 (2003)
- A. Ashkin, "Optical trapping and
manipulation of neutral particles using lasers", Proc. Natl. Acad. Sci. USA 94, 4853-4860 (1997)
Research Papers
- C. Bustamante, Y.R. Chemla,
N.R. Forde, and D. Izhaky, "Mechanical Processes in Biochemistry", Annu. Rev. Biochem. 73,
705-748 (2004)
- U.F. Keyser, J. van der Does, C.
Dekker, and N.H. Dekker, "Optical tweezers for force measurements on DNA in nanopores", Rev. Sci. Instr.
77, 105105 (2006)
- O. Otto, F. Dzerwinski, J.L. Gornall,
G. Stober, L.B. Oddershede, R. Seidel, and U.F. Keyser, "Real-time Particle Tracking at 10,000 fps using Optical Fiber Illumination", Optics Express 18, 22722-22733 (2010)
- E.J.G. Peterman, F. Gittes, and
C.F. Schmidt, "Laser-induced Heating in Optical Traps", Biophys. J. 84, 1308-1316 (2003)
Links
- The Padgett group in Glasgow has many movies about optical tweezers: link
- More on microscopy can be found at the Olympus website: link
- Even more from Nikon, with nice Java applets: link
- Optical tweezers TETRIS: link
Magnetic Tweezers and Supercoiled DNA
Research papers
- C. Gosse and V. Croquette,
"Magnetic Tweezers: Micromanipulation and Force Measurements at the Molecular Level", Biophys. J.
82, 3314-3329 (2002)
- A. Crut, D.A. Koster, R. Seidel, C.H.
Wiggins, and N.H. Dekker, "Fast dynamics of supercoiled DNA revealed
by single-molecule experiments", Proc. Natl. Acad. Sci. USA 104, 11957-11962 PNAS (2007)
- D.A. Koster, V. Croquette, C. Dekker,
S. Shuman, and N.H. Dekker, "Friction and torque govern the relaxation of DNA supercoils by e
ukaryotic topoisomerase IB", Nature 434, 671-674 (2005)
- D.A. Koster, K. Palle, E.S.M. Bot,
M.-A. Bjornsti, and N.H. Dekker, "Antitumour drugs impede DNA uncoiling by topoisomerase I", Nature
448, 213-217 (2007)
- J.F. Allemand, D. Bensimon,
R. Lavery, and V. Croquette, "Stretched and overwound DNA forms a Pauling-like structure with exposed bases",
Proc. Natl. Acad. Sci. USA 95, 14152-14157 (1998)
DNA, Force-extension, FJC, ...
Books
DNA structure: Drew and Calladine, "Understanding DNA"
Force extension: Nelson "Biological Physics", chapter 9
Force extension: Phillips et al., "Physical Biology of the Cell", Chapters 8 and 10
Research papers
- M.D. Wang, H. Yin, R. Landick, J. Gelles, and
S.M. Block, "Stretching DNA with Optical Tweezers", Biophys. J. 72, 1335-1346 (1997)
- C. Bouchiat, M.D. Wang, J.-F. Allemand,
T. Strick, S.M. Block, and V. Croquette, "Estimating the Persistence Length of a Worm-Like Chain Molecule from Force-Extension Measurements", Biophys. J. 76, 409-413 (1999)
- C.G. Baumann, S.B. Smith, V.A. Bloomfield, and
C. Bustamante, "Ionic effects on the elasticity of single DNA molecules", Proc. Natl. Acad. Sci. USA
94, 6185-6190 (1997)
Atomic Force Microscopy
Review
Research Papers
- A. Engel and D.J. Müller, "Observing single biomolecules at work with the atomic force microscope", Nature Struct. Biol. 7, 715-718 (2000)
- H.G. Hansma, J. Vesenka, C. Siegerist, G. Kelderman,
H. Morrett, R.E. Sinsheimer, V. Elings, C. Bustamante, and P.K. Hansma, "Reproducible Imaging and Dissection of Plasmid DNA Under Liquid with the Atomic ForceMicroscope", Science 256, 1180-1184 (1992)
- D.J. Müller and A.Engel, "Atomic force microscopy and spectroscopy of native membrane proteins", Nature Protocols 2, 2191-2197 (2007)
- F. Moreno-Herrero, M. de Jager, N.H. Dekker, R. Kanaar,
C. Wyman, and C. Dekker, "Mesoscale conformational changes in the DNA-repair complex Rad50/Mre11/Nbs1 upon binding DNA", Nature 437, 440-443 (2005)
Proteins, Folding and Unfolding
Books
protein structure and relevance: Alberts, et al., "Molecular Biology of the Cell"
protein structure and relevance: Lodish, Berk, et al., "Molecular Cell Biology"
protein folding: Fersht, "Structure and Mechanism in Protein Science", Chapter 19
first passage time: Phillips et al. "Physical Biology of the cell", Chapter 16
Research Papers
- P.E. Leopold, M. Montal, and
J.N. Onuchic, "Protein folding funnels, A kinetic approach to the sequence-structure relationship",
Proc. Natl. Acad. Sci. USA 89, 8721-8725 (1992)
- M. Rief, M. Gautel, F. Oesterhelt,
J.M. Fernandez, and H.E. Gaub, "Reversible Unfolding of Individual Titin Domains by AFM", Science
276, 1109-1112 (1997)
- R. Zwanzig, A. Szabo, and B. Bagchi "Levinthal's paradox", Proc. Natl. Acad. Sci. USA 89, 20-22 (1992)
(Colloid) Electrophoresis/Electrokinetic phenomena
Reviews
Research papers
- O. Otto, C. Gutsche,
F. Kremer, and U.F. Keyser, "Optical tweezers with 2.5 kHz bandwidth video detection for single-colloid electrophoresis", Rev. Sci. Instr. 79, 023710 (2008)
- I. Semenov, O. Otto,
G. Stober, P. Papadopoulos, U.F. Keyser, and F. Kremer, "Single colloid electrophoresis", J. Coll. Interface
Sci. 337, 260-264 (2009)
Links
- Santiago Lab at Stanford for imaging of flows in channels: link
Entropic Trapping
Research papers
- S.W.P. Turner, M. Cabodi,
and H.G. Craighead, "Confinement-Induced Entropic Recoil of Single DNA Molecules in a Nanofluidic Structure",
Phys. Rev. Lett. 88, 128103 (2002)
- L. Liu, P. Li, and S.A. Asher,
"Entropic trapping of macromolecules by mesoscopic periodic voids in a polymer hydrogel", Nature
397, 141-144 (1999)
-
J.T. Del Bonis-O'Donnell, W. Reisner, and D. Stein, "Pressure-driven DNA transport across an
artificial nantopography", New Journal of Physics 11, 075032 (2009)
(Gel) Electrophoresis
Books
general polymer physics and dynamics: Rubinstein, "Polymer Physics", chapters 7-9
for reptation and relaxation times: Strobl "The Physics of Polymers", chapters 3,8
Reviews
Nanopores
Books
very biological perspective: Hille, "Ion Channels of Excitable Membranes", xhapter 11
basic intro: Berg "Random walks in biology", chaptera 1-4
Reviews
Research papers
- J.J. Kasianowicz, E. Brandin, D. Branton,
and D.W. Deamer, "Characterization of individual polynucleotide molecules using a membrane channel",
Proc. Natl. Acad. Sci. USA 93, 13770-13773 (1996)
- J. Li, D. Stein, C. McMullan,
D. Branton, M.J. Aziz, and J.A. Golovchenko, "Ion-beam sculpting at nanometre length scales", Nature
412, 166-169 (2001)
- J. Li, M. Gershow, D. Stein,
E. Brandin, and J.A. Golovchenko, "DNA molecules and configurations in a solidstate nanopore microscope",
Nature Mat. 2, 611-615 (2003)
- A.J. Storm, C. Storm, J. Chen, H. Zandbergen,
J.-F. Joanny, and C. Dekker, "Fast DNA Translocation through a Solid-State Nanopore", Nano Letters
5, 1193-1197 (2005) pdf
- R.M.M. Smeets, U.F. Keyser, D. Krapf,
M.-Y. Wu, N.H. Dekker, and C. Dekker, "Salt dependence of ion transport and DNA translocation through solid-state nanopores", Nano Letters 6, 89-95 (2006)
- U.F. Keyser, B.N. Koeleman, S. van Dorp,
D. Krapf, R.M.M. Smeets, S.G. lemay, N.H. Dekker, and C. Dekker, "Direct force measurements on DNA in a solid-state nanopore", Nature Phys. 2, 473-477 (2006)
- S. van Dorp, U.F. Keyser, N.H. Dekker,
C. Dekker, and S.G. Lemay, "Origin of the electrophoretic force on DNA in solid-state nanopores",
Nature Phys. 5, 347-351 (2009)
- S. Garaj, W. Hubbard, A. Reina,
J. Kong, D. Branton, and J.A. Golovchenko, "Graphene as a subnanometre trans-electrode membrane", Nature
467, 190-193 (2010)
- J.E. Hall, "Resistance of a small circular pore",
J. Gen. Physiol. 66, 531-532 (1975)
Membranes and Membrane Proteins
Books
good introduction from physical point of view: Heimburg "Thermal Biophysics of Membranes", chapters 1-3
ATP motor: Nelson "Biological Physics" chapter 11
Reviews
Research Papers
|