|
|
Goldstein Lab
References from article
- 1. R. Brown, "A brief account of microscopical observations made in the months of June,
July and August 1827, on the particles contained in the pollen of plants; and on the general existence of active
molecules in organic and inorganic bodies",
Phil. Mag. 4, 161 (1828).
- 2. R. Brown, "Additional remarks on active molecules",
Phil. Mag. 6, 161 (1829).
- 3. R.D. Deegan, O. Bakajin, T.F. Dupont, G. Huber, S.R. Nagel and T.A. Witten,
"Capillary flow as the cause of ring stains from dried liquid drops",
Nature 389, 827 (1997).
- 5. W. Sutherland, "A dynamical theory of diffusion for non-electrolytes
and the molecular mass of albumin",
London, Edin. Dublin Phil. Mag. J. Sci. 9, 781 (1905).
- 6. A. Einstein, "Über die von der molekularkinetischen Theorie
der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen",
Ann. d. Phys. 17, 549 (1905); English translation:
"On the movement of small particles suspended in a stationary liquid demanded by the molecular-kinetic theory of heat".
- 7. B. Duplantier, "Brownian Motion, Diverse and Undulating",
in Einstein, 1905-2005. Poincaré Seminar 2005, Th. Damour, O. Darrigol, B. Duplantier and V. Rivasseau, Editors
(Birkhäuser Verlag, Basel, 2006), pp. 201-293.
- 8. R. Landauer, "Noise-activated escape from metastable states:
an historical view", in Noise in nonlinear dynamical systems. Vol. 1: Theory of continuous Fokker-Planck systems, F. Moss
and P.V.E. McClintock, Editors (Cambridge University Press, Cambridge, 1989), pp. 1-15.
- 9. R.L. Ricca, "Rediscovery of Da Rios equations",
Nature 352, 561 (1991).
- 10. A. Goriely, "Twisted elastic rings and the rediscoveries of
Michell's instability",
J. Elasticity 84, 281 (2006).
- 12. H.C. Berg and E.M. Purcell, "Physics of chemoreception",
Biophys. J. 20, 193 (1977).
- 13. K.A. Mott and T.N. Buckley, "Patchy stomatal conductance: emergent collective
behaviour of stomata", Trends Plant Sci. 5, 258 (2000).
- 14a. B.J. Ford, "Did physics matter to the pioneers of microscopy?",
Adv. Imag. Elect. Phys. 158, 27 (2009)
- 14b. B.J. Ford, "Living images from the birth of microscopy",
Microscopy Today 22, 18 (2014).
- 15. H. Jeffreys, "Some problems of evaporation",
Phil. Mag. 35, 270 (1918).
- 16. F. Wilczek, "Quantum time crystals",
Phys. Rev. Lett. 109, 160401 (2012).
- 17. P. Bruno, "Comment on 'Quantum time crystals'",
Phys. Rev. Lett. 110, 118901 (2013).
- 18. P. Bruno, "Comment on `Space-time crystals of trapped ions'",
Phys. Rev. Lett. 111, 029301 (2013).
- 19. T. Li, Z.-X. Gong, Z.-Q. Yin, H.T. Quan, X. Yin, P. Zhang, L.-M. Duan and
X. Zhang, "Space-time crystals of trapped ions",
Phys. Rev. Lett. 109, 163001 (2012).
- 20. P. Bruno, "Impossibility of spontaneously rotating time crystals: a
no-go theorem",
Phys. Rev. Lett. 111, 070402 (2013).
- 21. P. Nozières, "Time crystals: Can diamagnetic currents drive
a charge density wave into rotation?",
EPL 103, 57008 (2013).
- 22. H. Watanabe and M. Oshikawa, "Absence of quantum time crystals",
Phys. Rev. Lett. 114, 251603 (2015).
- 23. V. Khemani, A. Lazarides, R. Moessner and S.L. Sondhi, "Phase
structure of driven quantum systems",
Phys. Rev. Lett. 116, 250401 (2016).
- 24. C.W. von Keyserlingk, V. Khemani and S.L. Sondhi, "Absolute
stability and spatiotemporal long-range order in Floquet systems",
Phys. Rev. B 94, 085112 (2016).
- 25. D.V. Else, B. Bauer and C. Nayak, "Floquet time crystals",
Phys. Rev. Lett. 117, 090402 (2016).
- 26. N.Y. Yao, A.C. Potter, I.-D. Potirniche and A. Vishwanath,
"Discrete time crystals: rigidity, criticality, and realizations",
Phys. Rev. Lett. 118, 030401 (2017).
- 27. M.G. Floquet, "Sur les équations différentielles
linéaires à coefficients périodiques",
Ann. Sci. É.N.S. 12, 47 (1883).
- 28. J. Zhang, P.W. Hess, A. Kyprianidis, P. Becker, A. Lee, J. Smith,
G. Pagano, I.-D. Potirniche, A.C. Potter, A. Vishwanath, N.Y. Yao and C. Monroe, "Observation of a discrete time crystal",
Nature 543, 217 (2017).
- 29. S. Choi, J. Choi, R. Landig, G. Kucsko, H. Zhou, J. Isoya,
F. Jelezko, S. Onoda, H. Sumiya, V. Khemani, C. von Keyserlingk, N.Y. Yao, E. Demler and M.D. Lukin, "Observation of discrete
time-crystalline order in a disordered dipolar many-body system",
Nature 543, 221 (2017).
- 30. P. Richerme, "How to create a time crystal",
Physics 10, 5 (2017).
- 31. M. Faraday, "On a peculiar class of acoustical figures; and on
certain forms assumed by groups of particles upon vibrating elastic surfaces",
Phil. Trans. R. Soc. Lond. 121, 299 (1831).
- 32. S. Douady, "Experimental study of the Faraday instability",
J. Fluid Mech. 221, 383 (1990).
- 33. T.B. Benjamin and F. Ursell, "The stability of the plane
free surface of a liquid in vertical periodic motion",
Proc. R. Soc. Lond. A 225, 505 (1954).
- 34. M.C. Cross and P.C. Hohenberg, "Pattern formation
outside of equilibrium",
Rev. Mod. Phys. 65, 851 (1993).
- 35. W.S. Edwards and S. Fauve, "Parametrically excited
quasicrystalline surface waves",
Phys. Rev. E 47, R788 (1993).
- 36. A.T. Winfree, "Spiral waves of chemical activity",
Science 175, 634 (1972).
- 37. V. Castets, E. Dulos, J. Boissonade and P. De Kepper,
"Experimental evidence of a sustained standing Turing-type nonequilibrium chemical pattern",
Phys. Rev. Lett. 64, 2953 (1990).
- 38. J.B. Keller, "Ponytail motion",
SIAM J. Appl. Math. 70, 2667 (2010).
- 39. A. Chandran and S.L. Sondhi, "Interaction-stabilized
steady states in the driven O(N) model",
Phys. Rev. B 93, 174305 (2016).
- 40. G. Drews, "Contributions of Theodor Wilhelm Engelmann on
phototaxis, chemotaxis, and photosynthesis",
Photos. Res. 83, 25 (2005).
- 41. T.W. Engelmann, "Neue Methode zur Untersuchung der
Sauerstoffausscheidung pflanzlicher und thierischer Organismen",
Pflüegers Arch. Gesamte Physiol. 25, 285 (1881).
- 42a. T.W. Engelmann, "Ueber Sauerstoffausscheidung von
Pflanzenzellen im Mikrospectrum",
Pflüegers Arch. Gesamte Physiol. 27, 485 (1882).
- 42b. T.W. Engelmann, "Bacterium photometricum",
Pflüegers Arch. Gesamte Physiol. 30, 95 (1883).
- 43. T.W. Engelmann, "Das Mikrospectrometer",
Z. Wiss. Mikrosk. 5, 289 (1888).
- 44. A. Levskaya, A.A. Chevalier, J.J. Tabor, Z.B. Simpson,
L.A. Lavery, M. Levy, E.A. Davidson, A. Scouras, A.D. Ellington, E.M. Marcotte and C.A. Voigt, "Engineering
Escherichia coli to see light",
Nature 438, 441 (2005).
- 45. F.J. Peaudecerf and R.E. Goldstein,
"Feeding ducks, bacterial chemotaxis, and the Gini index",
Phys. Rev. E 92, 022701 (2015).
- 46. K.E. Machin,
"Wave propagation along flagella",
J. Exp. Biol. 35, 796 (1958).
- 47. W. Ludwig, "Zur theorie der Flimmerbewegung (Dynamik,
Nutzeffekt, Energiebilanz)",
Z. f. vergl. Physiologie 13, 397 (1930).
- 48. A.M. Turing, "The chemical basis of morphogenesis",
Phil. Trans. Roy. Soc. 237, 37 (1952).
- 49. B. Lim, M. Levine and Y. Yamazaki, "Transcriptional pre-patterning
of Drophila gastrulation",
Curr. Biol. 27, 286 (2017).
More classic papers from the old literature
|